Dernière mise à jour : 14-12-2017

7 sujets INAC/SPINTEC

• Electronique et microélectronique - Optoélectronique

• Physique du solide, surfaces et interfaces

 

Conception de circuit intégré synchrone hybride CMOS/MRAM sur technologie avancée robuste aux radiations spatiales

SL-DRF-18-0178

Domaine de recherche : Electronique et microélectronique - Optoélectronique
Laboratoire d'accueil :

Spintronique et technologie des composants (SPINTEC)

Laboratoire Spintec (SPINTEC)

Grenoble

Contact :

Gregory DI PENDINA

Lionel TORRES

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Gregory DI PENDINA

CEA - DSM/INAC/SPINTEC/SPINTEC

0438784746

Directeur de thèse :

Lionel TORRES

Université de Montpellier - LIRMM

04 67 41 85 67

Page perso : http://inac.cea.fr/Pisp/gregory.dipendina/index.html

Labo : http://www.spintec.fr/

A ce jour, plusieurs méthodes permettent de concevoir des circuits microélectroniques adaptés à des applications spatiales, répondant aux contraintes d’immunité aux radiations, que ce soit en termes de technique, de conception ou de procédé de fabrication. Après une expérience forte et enrichissante de 3 ans dans la cadre d'une thèse menée en collaboration entre le CNES, le LIRMM et le CEA/Spintec, de 2014 à 2017, nous souhaitons étendre et consolider ces travaux collaboratif. Nous aimerions proposer de nouvelles innovations pour la conception de circuits intégrés embarquant des technologies émergentes non volatiles, notamment les composants spintronique du type MRAM (mémoire Magnétique), en vue d'applications dans des environnements critiques, et plus spécifiquement le spatiale. En effet plusieurs études ont été faites ou sont en cours sur les mémoires MRAM en tant que tel. En revanche, nous proposons dans ce sujet de nous intéresser à l'intégration de jonctions tunnel magnétiques (JTM), élément de base des mémoires MRAM, dans la logique de calcul. Ces JTMs peuvent être intégrées aussi bien dans les parties séquentielles telles que les latchs et les bascules, mais également dans les parties combinatoires telles que les cellules de type NAND, NOR, etc. Il s’agit ici de proposer une logique hybride CMOS/MRAM pour rendre les circuits robustes vis-à-vis des environnements spatiaux. Ce sujet adresse donc la partie calcul de circuits numériques complexes tels que des micro-processeurs par exemple. Par ailleurs, la technologie STT-MRAM (Spin Transfer Torque), qui est à ce jour la technologie MRAM la plus avancée et qui commence à être industrialisée, sera utilisée pour ces travaux d’innovation. Cependant, la technologie SOT-MRAM (Spin Orbit Torque), qui est la technologie MRAM la plus émergente et qui a déjà démontré d’intéressantes propriétés pour les circuits hybrides de la microélectronique et notamment en termes de robustesse face aux particules, sera également considérée dans cette étude afin d’apporter une étude la plus complète possible, ainsi que la solution la plus efficace. Ces travaux se veulent prospectifs et seraient menés sur des technologies avancées. L'objectif est de fabriquer un circuit intégré complet et de réaliser des essais radiations avec le CNES (sous ions lourds et/ou dose) pour valider la robustesse pour les applications spatiales « de cette logique combinatoire et séquentielle nouvelle basée sur la technologie MRAM ». Cette thèse serait principalement encadrée par l’équipe « conception de circuits intégrés non-volatils » du laboratoire CEA -Spintec de Grenoble et dirigée par le LIRMM.

Simulation au niveau système et flot d'exploration d'architectures neuromorphiques non-volatiles

SL-DRF-18-0278

Domaine de recherche : Electronique et microélectronique - Optoélectronique
Laboratoire d'accueil :

Spintronique et technologie des composants (SPINTEC)

Laboratoire Spintec (SPINTEC)

Grenoble

Contact :

François DUHEM

Benoît MIRAMOND

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

François DUHEM

CEA - DRF/INAC/SPINTEC/SPINTEC

04 38 78 52 98

Directeur de thèse :

Benoît MIRAMOND

Université Nice Sophia Antipolis - LEAT (Laboratoire d'Electronique, Antennes et Télécommunications) UMR CNRS 7248

04.92.94.28.84

Labo : http://www.spintec.fr/

L’implantation matérielle de réseaux de neurones est un sujet de recherche stratégique pour de nombreuses entreprises internationales. Les principaux projets autour de l’ingénierie neuromorphique ont donné naissance à des puces inspirées du comportement du cerveau comme SyNAPSE, TrueNorth ou SpiNNaker. Ces technologies ciblent principalement de puissantes fermes de calcul et sont peu adaptées aux contraintes de consommation énergétique des systèmes embarqués ou de l’internet des objets.

L’intégration hétérogène de la technologie CMOS avec des technologies émergentes permettrait de s’affranchir de ces limitations. En particulier, la technologie mémoire MRAM (Magnetoresistive Random-Access Memory) est considérée comme la plus prometteuse des mémoires non-volatiles permettant de réduire la consommation énergétique des architectures de calcul. Il manque toutefois d’une approche haut niveau permettant d’évaluer et d’améliorer les gains apportés par ces mémoires.

Dans ce contexte, cette thèse consiste en la définition d’une plateforme de modélisation conjointe de la logique numérique et de fonctions à base de mémoires non-volatiles ciblant les accélérateurs neuromorphiques. La plateforme permettra l’exploration de différents choix architecturaux basés sur les propriétés des mémoires non-volatiles afin de mieux comprendre le compromis entre performance, surface et consommation énergétique.

La thèse sera dirigée par le Professeur Benoît Miramond (Université Côte d’Azur, LEAT, Sophia Antipolis) et encadrée par François Duhem (CEA/Spintec, Grenoble).

Compétences nécessaires : conception RTL, architecture de systèmes, électronique, langages de programmation C/C++ ou similaire (connaissances en SytemC appréciées)

Electronique de spin antiferromagnétique

SL-DRF-18-0274

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Spintronique et technologie des composants (SPINTEC)

Laboratoire Spintec (SPINTEC)

Grenoble

Contact :

Vincent BALTZ

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Vincent BALTZ

CNRS - DFR/INAC/SPINTEC/SPINTEC

04 38 78 03 24

Directeur de thèse :

Vincent BALTZ

CNRS - DFR/INAC/SPINTEC/SPINTEC

04 38 78 03 24

Labo : http://www.spintec.fr/research/antiferromagnetic-spintronics/

Voir aussi : https://arxiv.org/ftp/arxiv/papers/1606/1606.04284.pdf

Les matériaux antiferromagnétiques (alignement antiparallèle des moments magnétiques atomiques) pourraient représenter l'avenir des applications d’électronique de spin grâce aux nombreuses fonctionnalités qu'ils combinent: ils sont insensibles aux champs magnétiques, n’en créent pas, possèdent une dynamique magnétique ultrarapide, et génèrent de forts effets de transport électronique dépendent du spin. D’intenses efforts de recherche sont investis au niveau mondial pour comprendre les propriétés de transport dépendant du spin dans les matériaux antiferromagnétiques. Evaluer dans quelle mesure le transport dépendant du spin peut être utilisé pour piloter l'ordre antiferromagnétique et comment détecter les variations induites sont quelques-uns des défis passionnants à relever.

Avec pour paramètres ajustables la nature des éléments constitutifs des matériaux antiferromagnétiques ou encore la qualité des interfaces, nous étudierons principalement l’efficacité de l’injection de spin et le filtrage des interfaces, l’absorption de spin dans le cœur du matériau et les longueurs caractéristiques d’absorption, les températures d’ordre et les susceptibilités magnétiques ou encore l’efficacité des couplages spin-orbite via l’effet Hall de spin.

Cette thèse est expérimentale. Elle s’appuiera sur les nombreux moyens de fabrication (pulvérisation cathodique, épitaxie par jet moléculaire, nanofabrication en salle blanche) et de caractérisation (magnétométrie, résonance ferromagnétique, transport) du laboratoire SPINTEC. Elle bénéficiera des rapports privilégiés avec des laboratoires partenaires pour des expériences en cavité résonante et l’obtention d’échantillons complémentaires.

Etude des propriétés physiques des skyrmions magnétiques en vue d’applications de type capteur

SL-DRF-18-0215

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Spintronique et technologie des composants (SPINTEC)

Laboratoire Spintec (SPINTEC)

Grenoble

Contact :

Claire BARADUC

Hélène BEA

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Claire BARADUC

CEA - DRF/INAC/SPINTEC/SPINTEC

04 38 78 42 35

Directeur de thèse :

Hélène BEA

UGA - DRF/INAC/SPINTEC/SPINTEC

04 38 78 08 46

Labo : http://www.spintec.fr/research/magnetic-sensors/

Les skyrmions sont des bulles magnétiques chirales dans lesquelles l'aimantation tourne selon une cycloïde. Ils peuvent apparaître dans des tricouches métal lourd/ferromagnétique/oxyde présentant une interaction d’interface (Dzyaloskinskii-Moriya). Cette interaction rend les skyrmions stables, moins sensibles aux défauts que les parois de domaines habituelles et facilement déplaçables par courant électrique. Ils suscitent actuellement un fort engouement car ils pourraient être utilisés dans des composants spintroniques de type mémoire ou logique magnétique.

Il a déjà été montré que leur taille est modulable par champ magnétique. Nous avons de plus récemment observé dans des films ultra-minces que leur taille et densité est également modulée par une tension de grille, conduisant à la réalisation d'un interrupteur à skyrmion [1]. Ce nouveau degré de liberté permettrait une multifonctionnalité des dispositifs et un meilleur contrôle de leurs propriétés magnétiques.



Pour développer des dispositifs à base de skyrmions, les objectifs de cette thèse expérimentale seront :

- de comprendre et contrôler les différentes contributions à l’interaction de Dzyaloshinskii-Moriya en jouant sur les matériaux et à l’aide d’un support théorique de chercheurs du laboratoire.

- d’optimiser grâce à une étude matériau la sensibilité des skyrmions à une tension de grille ainsi que leur stabilité en température. En effet, la fonctionnalité d’un dispositif doit être maintenue dans la gamme de température nécessaire aux applications.

- de caractériser la signature électrique des skyrmions en utilisant la microscopie magnéto-optique couplée à des mesures de transport. Cette signature est importante pour mesurer l’état du dispositif et cela constitue encore un défi, les signaux actuellement mesurés étant encore faibles.

- enfin, de tester le potentiel de ces skyrmions dans des dispositifs de spintronique







[1] M. Schott et al. Nano Lett., 17, 3006 (2017)

Imagerie magnétique au TEM de nanotubes pour l’électronique de spin

SL-DRF-18-0518

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Spintronique et technologie des composants (SPINTEC)

Laboratoire Spintec (SPINTEC)

Grenoble

Contact :

Eric GAUTIER

Jean-Luc ROUVIERE

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Eric GAUTIER

CNRS - DRF/INAC/SPINTEC/SPINTEC

0438784226

Directeur de thèse :

Jean-Luc ROUVIERE

CEA - DSM/INAC/SP2M/LEMMA

04 38 78 50 86

Page perso : https://cv.archives-ouvertes.fr/olivier-fruchart

Labo : http://www.spintec.fr/research/spin-textures/

Voir aussi : http://fruchart.eu

L'objectif du stage est l'étude par microscopie électronique en transmission (TEM) de nanotubes magnétiques synthétisés par voie chimique. Nous étudions ceux-ci comme objets modèles pour explorer le concept de stockage d’information dans un média magnétique 3D, basé sur la propagation de parois magnétiques. Une étude physico-chimique du matériau et par imagerie magnétique à l'échelle du nanomètre permettront d’explorer et comprendre l’arrangement en domaines et parois de domaines magnétiques de ces systèmes, dont nous maitrisons la synthèse depuis peu.

Les techniques expérimentales mises en œuvre seront l'analyse chimique et structurale par diffraction électronique et imagerie haute résolution ainsi que l'imagerie magnétique et l'holographie électronique. L'étudiant devra réaliser la préparation des échantillons pour la microscopie électronique, le montage d'un dispositif en vue d'une observation dans le microscope.

La microscopie sera menée en collaboration avec le INAC-MEM-LEMMA et le LETI. Le sujet comprend également un volet de traitement, interprétation des données et simulations micromagnétiques, effectuées avec le groupe de simulation du laboratoire SPINTEC / NEEL et permettront d'interpréter nos résultats.

Magnétomètre miniature ultra-sensible pour les missions spatiales

SL-DRF-18-0141

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Spintronique et technologie des composants (SPINTEC)

Laboratoire Spintec (SPINTEC)

Grenoble

Contact :

Hélène BEA

Claire BARADUC

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Hélène BEA

UGA - DRF/INAC/SPINTEC/SPINTEC

04 38 78 08 46

Directeur de thèse :

Claire BARADUC

CEA - DRF/INAC/SPINTEC/SPINTEC

04 38 78 42 35

Labo : http://www.spintec.fr/research/magnetic-sensors/

L’objectif est de développer un magnétomètre miniature et ultra-sensible (100 fT/Hz^1/2), en utilisant des jonctions tunnel magnétiques et les techniques de microfabrication issues de la microélectronique. Ce magnétomètre pourrait remplacer les magnétomètres utilisés actuellement sur les missions spatiales avec un gain de masse d’un facteur 100. Cette extrême légèreté (~1 g hors électronique) représenterait un avantage compétitif décisif par rapport aux capteurs inductifs utilisés actuellement lors de missions spatiales (masse >1 kg).

Le magnétomètre proposé combine une jonction tunnel magnétique comme élément sensible du capteur, un concentrateur de flux pour amplifier le champ à mesurer et un système de modulation du champ magnétique pour réduire le bruit de la mesure. Des études préparatoires ont permis de montrer la faisabilité des briques de base de ce capteur. Il s’agit maintenant d’optimiser le concentrateur de flux et la jonction tunnel magnétique, en particulier en développant une jonction innovante faisant actuellement l’objet d’une proposition de brevet.

Le travail de thèse sera majoritairement expérimental (microfabrication, caractérisation électrique et magnétique, mesures de bruit, imagerie magnétique) mais inclura également de l’analyse et des simulations micromagnétiques.

Manipulation of spin currents and magnetic state at the nanoscale using the spin orbit coupling

SL-DRF-18-0058

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Spintronique et technologie des composants (SPINTEC)

Laboratoire Spintec (SPINTEC)

Grenoble

Contact :

Laurent VILA

Jean Philippe ATTANE

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Laurent VILA

CEA - DSM/INAC/SP2M/NM

0438780355

Directeur de thèse :

Jean Philippe ATTANE

Universite Joseph Fourier - INAC/SP2M

0438784326

Page perso : http://inac.cea.fr/Pisp/laurent.vila/

Labo : http://www.spintec.fr/research/spin-orbitronics/

The development of spin electronics, or spintronics, allows to imagine many devices taking advantage of an electronics no longer based solely on the electrical charge of the carriers but also on their spin. This new degree of freedom offers additional means of conveying information, and introduces new ways to manipulating it.

Very recently, a collection of Spin Orbit based spin-to-charge interconversion mechanisms (Spin Hall effects, Rashba and Topological Insulators) were observed experimentally. It appears in the set of non-magnetic metals, semiconductors or oxydes, and sorts the carriers according to their spin state. It allows injecting and detecting spins without necessarily using magnetic materials or a magnetic field, which is both conceptually and technologically very interesting.

In this framework, we wish to create lateral nanostructures taking advantage of pure spin current generated by harnessing the Spin Orbit coupling for both spin to charge interconversion mechanisms and the manipulation of magnetization state of nano-object (dot or magnetic domain wall) by absorption of this current and spin transfer torque. Material of interest will be metals, oxydes and topological insulators to generate or detect spin currents, and will be applied to the manipulation of the magnetic state of a nanoelement, an example of a recent realization being given on the figure.

If subjects related to the spin transfer by absorption of a pure spin current are very competitive, they are scientifically rich, and currently booming. This area of research is still largely open to exploration, and we are benefiting from our recent development of efficient injection and detection devices.

The proposed topic lies in basic research but with a clear opening towards applied research. The trainee will benefit from the technical and scientific environment of the laboratory, and the collaborations put in place with the major actors of the field at the international level. This project is supported by funding from the ANR.

 

Retour en haut