4 sujets INAC/PHELIQS

Dernière mise à jour : 12-09-2018


• Physique du solide, surfaces et interfaces

• Physique théorique

 

Analyse et contrôle de bactéries par microcavité optique

SL-DRF-18-0072

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Photonique, Electronique et Ingénierie Quantiques (PHELIQS)

Laboratoire Silicium Nanoélectronique Photonique et Structures (SINAPS)

Grenoble

Contact :

Emmanuel PICARD

Pierre R. MARCOUX

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Emmanuel PICARD

CEA - DRF/INAC/PHELIQS/SINAPS

04 38 78 90 97

Directeur de thèse :

Pierre R. MARCOUX

CEA - DRT/DTBS/SBSC/LCMI

04 38 78 15 04

La pression de radiation est la force exercée par la lumière lorsqu’elle rencontre ou traverse un objet. Cette force si petite soit-elle peut permettre de déplacer ou manipuler, à la manière d’une mini pince, des objets de dimension micrométrique. Généralement mis en œuvre au travers d’un microscope, on parle alors de pince optique.

Le laboratoire à une longue expérience dans l’étude des microcavités à cristaux photoniques, il y a été démontré que les microcavités optiques dans la filière SOI, permettent de réaliser un confinement extrêmement efficace du champ électromagnétique, tant du point de vue spectral que spatial. La mise en évidence et la quantification les forces optiques (pression de radiation et gradient) générées par ces microcavités a été obtenue par l'observation du mouvement de particules micrométriques placées en solution à proximité des structures. Il a pu ainsi être démontré que ces systèmes optofluidiques permettent le piégeage, l’assemblage, la manipulation et le tri de micro-nano objets en suspension. Nous avons franchi une étape supplémentaire en réussissant à identifier une bactérie piégée sur le piège grâce à sa signature optique.

Dans le cadre de ce sujet de thèse, nous envisageons de poursuivre ces études en évaluant les potentialités de ces technologies optofluidiques dans le domaine de la biologie cellulaire. Une première étape sera de faire évoluer les composants vers un système intégré permettant de conserver une viabilité cellulaire compatible avec les contraintes des mesures spectroscopiques. L'objectif final de cette thèse sera de proposer un système optofluidique silicium permettant d’analyser et/ou contrôler dynamiquement le comportement d’une cellule en fonction d’agent extérieur (antibiotique, chaleur, nourriture). Les travaux seront conduits en collaboration avec les équipes spécialisées dans les technologies du vivant et de la santé.

Nanofils hybrides pour l'informatique quantique topologique

SL-DRF-18-1006

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Photonique, Electronique et Ingénierie Quantiques (PHELIQS)

Laboratoire de Nano Physique des Semi-Conducteurs (NPSC)

Grenoble

Contact :

Moïra HOCEVAR

Date souhaitée pour le début de la thèse : 01-09-2018

Contact :

Moïra HOCEVAR

CNRS - DRF/INAC/PHELIQS/NPSC

0438783513

Directeur de thèse :

Moïra HOCEVAR

CNRS - DRF/INAC/PHELIQS/NPSC

0438783513

General Scope:

One interesting and promising proposal for quantum computation relies on the so-called topological protected quantum bits. Realizing such quantum bits depends on the ability to make materials that can host Majorana bound states. In 2012, signatures of such states were reported in one-dimensional semiconductors with high spin-orbit coupling, coupled to a superconductor [1]. Since then, nanostructured hybrid materials based on superconductor/semiconductor interfaces have received increased attention. Yet, controlled formation of topological protected states can only be realized if the superconductor/semiconductor interface is of high quality. Creating those interfaces in an epitaxial fashion would have many advantages, among them better transparency, controlled interface chemistry, higher current injection and lower disorder. However, combining crystalline metals and semiconductors is challenging because of the fundamental different properties of both families of materials. Recently, in-situ epitaxial growth of InAs/Al core/shell nanowires exhibited defect free and homogeneous interfaces [2]. The devices revealed a superconducting hard gap demonstrating the high potential of in-situ shell epitaxy. Here, we propose to develop novel interfaces using a higher critical field superconductor such as vanadium to reach the Majorana regime and to perform further topological experiments.

[1] V. Mourik et al 2012 Science 336(6084) 1003

[2] P. Krogstrup et al 2015 Nature Materials 14 400



Research topic and facilities available:

In this project, the student will carry out the growth of networks of hybrid nanowires in a III-V molecular beam epitaxy reactor in CEA/INAC. In particular, she/he will focus on InAs/V core/shell nanowire fabricated using templates developed in the cleanroom. The student will perform the characterization of the samples by SEM, EDX and/or TEM. Together with partner labs in the USA, she/he will participate in several low temperature measurement campaigns throughout the course of her/his PhD, as well as perform high-end structural studies using advanced equipment and facilities.

Étude théorique de matériaux et systèmes magnétocaloriques avancés

SL-DRF-18-0177

Domaine de recherche : Physique du solide, surfaces et interfaces
Laboratoire d'accueil :

Photonique, Electronique et Ingénierie Quantiques (PHELIQS)

Groupe Théorie (GT)

Grenoble

Contact :

Mike ZHITOMIRSKY

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Mike ZHITOMIRSKY

CEA - DRF/INAC/PHELIQS/GT

04.38.78.43.30

Directeur de thèse :

Mike ZHITOMIRSKY

CEA - DRF/INAC/PHELIQS/GT

04.38.78.43.30

Labo : http://inac.cea.fr/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=1157

Un champ magnétique externe affecte l'entropie d'un système magnétique et provoque des variations de température qui peuvent être utilisées pour la réfrigération magnétique. Une technologie de refroidissement alternative de ce type est de plus en plus importante aujourd'hui pour les télescopes spatiaux, les expériences en physique des particules et l'informatique quantique. A ce jour, la plupart des réfrigérateurs à désaimantation adiabatique utilisent des sels paramagnétiques qui ont une capacité limitée pour des températures supérieures à 1 K. Récemment, deux nouvelles familles de matériaux magnétocaloriques adaptées aux applications dans la gamme de température 1-4 K ont été proposées : des systèmes de spins à géométrie frustrée et des aimants dipolaires. Nous envisageons d'étudier les propriétés magnétocaloriques de ces matériaux en utilisant des simulations Monte Carlo de modèles de spin appropriés pour les matériaux connus, tels que Gd3Ga5O12 et GdLiF4, ainsi que pour les matériaux magnétocaloriques prospectifs, Yb2Ti2O7 et Yb3Ga5O12. L'étude théorique bénéficiera d'une collaboration avec les études expérimentales en cours à l'INAC.

Effet des interactions sur les propriétés topologiques de jonctions Josephson multiterminales

SL-DRF-18-0289

Domaine de recherche : Physique théorique
Laboratoire d'accueil :

Photonique, Electronique et Ingénierie Quantiques (PHELIQS)

Groupe Théorie (GT)

Grenoble

Contact :

Julia MEYER

Manuel HOUZET

Date souhaitée pour le début de la thèse : 01-10-2018

Contact :

Julia MEYER

Université Grenoble Alpes - DRF/INAC/PHELIQS/GT

04.38.78.31.46

Directeur de thèse :

Manuel HOUZET

CEA - DRF/INAC/PHELIQS/GT

04.38.78.90.44

Page perso : http://inac.cea.fr/Pisp/manuel.houzet/

Labo : http://inac.cea.fr/en/Phocea/Vie_des_labos/Ast/ast_groupe.php?id_groupe=501

Les matériaux topologiques sont des phases de la matière condensée qui admettent des états topologiquement protégés à leurs bords. Une voie prometteuse pour les réaliser consiste à combiner différents matériaux conventionnels pour obtenir des hétérostructures présentant ces propriétés. Une alternative consiste à étudier des jonctions Josephson multiterminales formées entre des supraconducteurs conventionnels. Par exemple, des jonctions à 4 terminaux peuvent admettre des états liés topologiquement protégés à énergie nulle et qui réalisent ce qu’on appelle des singularités de Weyl. Leur existence peut être révélée grâce à une transconductance quantifiée, comme dans l'effet Hall quantique, mais en absence de champ magnétique. Le but du projet sera d'explorer cette idée récente en étudiant d’un point de vue théorique la robustesse de cette prédiction en présence de répulsion Coulombienne à l’intérieur de la jonction. En particulier, la présence de singularités de Weyl sera analysée dans un modèle concret d’îlots quantiques connectés à des supraconducteurs.

 

Retour en haut