2 sujets INAC/SYMMES

Dernière mise à jour : 19-02-2019


• Chimie

• Matériaux et applications

 

Systèmes à base de quantum dots pour la photocatalyse redox de réactions radicalaires en lumière visible

SL-DRF-19-0678

Domaine de recherche : Chimie
Laboratoire d'accueil :

SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SyMMES)

Conception d’architectures moléculaires et processus électroniques (CAMPE)

Grenoble

Contact :

Vincent MAUREL

Date souhaitée pour le début de la thèse : 01-10-2019

Contact :

Vincent MAUREL

CEA - DRF/INAC/SYMMES/CAMPE

04 38 78 35 98

Directeur de thèse :

Vincent MAUREL

CEA - DRF/INAC/SYMMES/CAMPE

04 38 78 35 98

Page perso : http://inac.cea.fr/Pisp/vincent.maurel/

Au cours de la dernière décennie l'émergence de la photocatalyse redox a révolutionné le domaine de la chimie organique de synthèse. La mise au point de nouveaux photocatalyseurs a bénéficié du développement des catalyseurs pour la conversion de l'énergie solaire. Les complexes de coordination à base de ruthénium et d'iridium jouent un rôle majeur dans ce développement. En plus des photocatalyseurs homogènes, les recherches sur les photocatalyseurs à base de semiconducteurs pour la synthèse commencent à peine à émerger. Nous proposons un programme de recherche dédié au développement et à l'étude de quantum dots (QD) semiconducteurs colloïdaux comme photocatalyseurs redox pour la synthèse organique. Ces photocatalyseurs nanocristallins sont particulièrement prometteurs car ils présentent les avantages des catalyseurs homogènes, tels qu'un coefficient d'extinction molaire élevé dans le domaine visible, et parce qu'ils peuvent être séparés des produits de réaction par filtration ou par centrifugation. De plus les QD sont connus pour être très résistants au photo-blanchiment et leurs propriétés redox peuvent être ajustées finement en changeant leur composition(CdS, CdSe, ZnO, ZnSe... ), en contrôlant leur taille et en modifiant les ligands utilisés pour les stabiliser.

Ce sujet de thèse s'inscrit dans un projet collaboratif qui vise: 1) l'utilisation de QD comme photocatalyseurs pour la génération de radicaux alkoxyles; 2) le développement d'une nouvelle classe de photocatalyseurs combinant QD et nanoparticules d'argent (QD-Ag-NP).

Développement de nanofils conducteurs à base d'une matrice d'ADN

SL-DRF-19-0746

Domaine de recherche : Matériaux et applications
Laboratoire d'accueil :

SYstèmes Moléculaires et nanoMatériaux pour l’Energie et la Santé (SyMMES)

Groupe Chimie pour la Reconnaissance et l'Etudes d'Assemblages Biologiques (CREAB)

Grenoble

Contact :

Yoann ROUPIOZ

Didier GASPARUTTO

Date souhaitée pour le début de la thèse : 01-11-2019

Contact :

Yoann ROUPIOZ

CNRS - DRF/INAC/SyMMES/CREAB

04 38 78 98 79

Directeur de thèse :

Didier GASPARUTTO

CEA - DRF/INAC/SyMMES/CREAB

04 38 78 45 48

Page perso : https://www.researchgate.net/profile/Didier_Gasparutto

Labo : www.symmes.fr

En raison des dimensions nanométriques de la double hélice d'ADN (diamètre de 2 nm), cette molécule d'origine naturelle apparait comme un chassis prometteur pour la métallisation et la production à bas coûts de nanofils métalliques. Depuis les premières preuves de concept publiées il y a une vingtaine d'année, de nombreux efforts ont été produits pour obtenir des nanofils de plus en plus fin à partir d'une matrice d'ADN, tout en montrant des propriétés de conductivité satisfaisantes. En collaboration avec un autre laboratoire grenoblois (LMGP, INP-Grenoble), nous souhaitons développer une voie alternative pour la production de nanofils d'ADN métallisés par Atmospheric Pressure Spatial Atomic Layer Deposition (AP-SALD). Plusieurs métaux seront utilisés, et en particulier l'or et le cuivre. Ce nanomatériau sera ensuite fonctionnalisé, et conjugué à d'autres biomolécules afin de tirer profit de l'immense surface développée présentée par ces nanostructures. Ce projet de doctorat a donc pour objectif de synthétiser, développer et caractériser un nouveau matériau dont les propriétés intrinsèques seront modulables grâce à l'ADN. Un des objectifs principaux sera alors le design de surfaces greffées par des enzymes, dont les applications seraient de première importance, notamment pour la production de biopiles de nouvelle génération.

 

Retour en haut