Manipulation of Majorana fermions via single charge control

Karsten Flensberg
Niels Bohr Institute
University of Copenhagen
Outline

1D topological superconductor and Majorana bound states

Tunnel characteristic of chain of Majorana bound states

Spectroscopy with a Coulomb island coupled to Majorana state

Non-abelian manipulation via single electron control

Transfer between topological and spin qubit systems
Topological superconductor

Semiconductor with strong S0

S-wave superconductor

\[H_0 = \frac{p_x^2}{2m} + \alpha (\mathbf{E} \times \mathbf{p}_x) \cdot \sigma + \frac{1}{2} g \mu_B \mathbf{B} \cdot \sigma \]

\(B = 0 \)

\(B \neq 0 \)

\(m = \alpha = 1 \)

Can now couple to s-wave superconductor
Triplet superconductor by Zeeman & SO

Pairing in semiconductor induced by proximity effect:

\[\Delta = 0 \]
\[\Delta = 0.5B \]
\[\Delta = B \]
\[\Delta = 1.5B \]

Effective Hamiltonian for the lowest mode \(\mu = 0 \):

\[
H_{\text{eff}} = \frac{i\alpha}{2} \int dx \{ \eta_1(x) \partial_x \eta_1(x) - \eta_2(x) \partial_x \eta_2(x) \} + i \int dx \{ i(B_\perp(x) - \Delta(x))\eta_1(x)\eta_2(x) \}
\]

Spin up/down Majorana modes:

\[\eta_1(x) = \Psi_\uparrow^\dagger(x) + \Psi_\downarrow^\dagger(x) \]
\[\eta_2(x) = \Psi_\uparrow^\dagger(x) + \Psi_\downarrow(x) \]
Majorana end bound states

Topological superconductor

Normal lead

\[\gamma_1 = \int \! dx \, f_L(x) \left(\Psi_{\uparrow y}(x) + \Psi_{\uparrow y}^\dagger(x) \right) \] : Spin up in \(y \)

\[\gamma_2 = \int \! dx \, f_R(x) \left(\Psi_{\downarrow y}(x) + \Psi_{\downarrow y}^\dagger(x) \right) \] : Spin down in \(y \)

\[H_T = \sum_k \left(v_{1,k} c_{k\uparrow y} - v_{1,k}^* c_{k\uparrow y}^\dagger \right) \gamma_1 \]
Tunneling into disordered chain of Majorana bound states

\[H_S = \frac{i}{2} \sum_{ij} t_{ij} \gamma_i \gamma_j \]

\[\mu_c = \pm \sqrt{B^2 - \Delta^2} \]

(Disorder correlation length > Majorana localization length)
General current formula

\[
\frac{dI}{dV} = \frac{2e^2}{h} \int d\omega \Gamma \text{Im}[G_{11}^R(eV)] \left[\frac{df(\omega - eV)}{d\omega} \right]
\]

\[
G^R(\omega) = 2[\omega - 2it + i2\Gamma]^{-1}
\]

PRB, 180516R (2010)
Short chain

Andreev channel: resonant

Electrons MBS Holes

\[\mu + \Delta \]
\[\mu \]
\[\mu - \Delta \]
Long random chain

Example with “weak” link:
What is a "weak" link?

Remember:

$$\frac{dI}{dV} = \frac{2e^2}{h} \int d\omega \Gamma \text{Im}[G^R_{11}(eV)] \left[\frac{df(\omega - eV)}{d\omega} \right]$$

$$t_{\text{weak}} = t_{n,n+1}$$

Width of resonances due to the chain after weak link:

$$\Gamma_{\text{weak}} \propto \frac{t_{\text{weak}}^2}{\langle t \rangle \Gamma}$$

Note visible if: $$k_B T \gtrsim \Gamma_{\text{weak}}$$
Spectroscopy of Majorana bound states using quantum dot

Tunneling limit

\[\Gamma \ll U, \lambda, k_BT \]

Solve QD-TS exactly and use master equation - include relaxation of parity
Eigenstates of QD-TS

Even subspace, 4 states:
|00⟩, |σ1⟩, |20⟩

Odd subspace, 4 states:
|σ0⟩, |01⟩, |21⟩

Mixed by tunneling

Solve rate equations!
Coulomb blockade "diamond"

\[\lambda = T, \xi = 0 \]

\[\lambda = 5T, \xi = 0 \]

\[\sigma = \uparrow \]

\[\sigma = \downarrow \]

Bias voltage

\[\alpha V_g \] [T]

Note:
Blue = NDR

Zero bias peak

MBS
Finite coupling between Majorana states – inelastic cotunneling - relaxation

\[\lambda = T, \xi = 10T \]

\[\Lambda = 4\Gamma \lambda^2 / \xi^2 \]

Non-eq. Cotun.
Non-abelian manipulations using single charge control

By changing the charge on a dot by one electron:

\[P_{12} : |i\rangle \mapsto (|v_1\gamma_1 + |v_2\gamma_2|i\rangle \]

Compare to braiding:

\[B_{12} : |i\rangle \mapsto \frac{1}{\sqrt{2}} (1 + \gamma_1\gamma_2)|i\rangle \]
Manipulation of the Majorana system by single electron addition/removal

Projection to zero mode and one spin direction in dot:

\[H_1 = \varepsilon c_{1_y}^{\dagger} c_{1_y} + \left(v_1^{*} c_{1_y}^{\dagger} - v_1 c_{1_y} \right) \gamma_1 \]

M-fermion:
\[d = (\gamma_1 + i\gamma_2)/2 \]
\[\gamma_1 = d + d^{\dagger} \]

Basis states:
Total even: \(\{ |0\rangle_D |0\rangle_{M12}, |1\rangle_D |1\rangle_{M12} \} \)
Total odd: \(\{ |0\rangle_D |1\rangle_{M12}, |1\rangle_D |0\rangle_{M12} \} \)

\[H_{1,\text{even/odd}} = \begin{pmatrix} 0 & v_1 \\ v_1^{*} & \varepsilon \end{pmatrix} \]

"Protected"
More Majorana states and more dots

Allows a finite number of operations of the form:

$$\gamma_1 \cdots \gamma_m |i\rangle_M$$
Coupling to two Majorana bound states

M1, M2 and D1:

\[H_{12} = \varepsilon c_{\uparrow y}^{\dagger} c_{\uparrow y} + \left(v_1^* c_{\downarrow y}^{\dagger} - v_1 c_{\downarrow y} \right) \gamma_1 + \left(v_2^* c_{\downarrow y}^{\dagger} - v_2 c_{\downarrow y} \right) \gamma_2 \]

But now even/odd not degenerated

\[H_{12, \text{even/odd}} = \begin{pmatrix} 0 & v_{\text{even/odd}} \\ v_{\text{even/odd}}^* & \varepsilon \end{pmatrix} \]

\[v_{\text{even/odd}} = v_1 \mp i v_2 \]

(degenerated only if \(v_1 \) and \(v_2 \) are real)
In degeneracy point: \[2\text{Arg}(v_1/v_2) = 0 \]

\[
H_{12} = \varepsilon \hat{c}^\dagger \hat{c} + \nu (\hat{c}^\dagger - \hat{c}) \gamma_{12}
\]

\[
\gamma_{12} = \frac{1}{\sqrt{|v_1|^2 + |v_2|^2}} (|v_1|\gamma_1 + |v_2|\gamma_2)
\]

\[
P_{12} : \quad |i\rangle \mapsto \gamma_{12} |i\rangle
\]

Requires:
- Constant tunneling amplitudes
- Constant flux

No dependence on timing
Compare to braiding

\[\gamma_{12} = \frac{1}{\sqrt{|v_1|^2 + |v_2|^2}} (|v_1| \gamma_1 + |v_2| \gamma_2) \]

With

\[v_1 = v_2 \]

\[F_i = \frac{1}{\sqrt{2}} (\gamma_i + \gamma_{j+1}) \]

\[B_i = F_i \gamma_i = \gamma_{i+1} F_i \]

"Tunnel braid" can mimic real space braiding

Ivanov, PRL 2001
General v_1 and v_2

Two-level system

$\sigma_x = \gamma_1, \sigma_y = \gamma_2$

$\sigma_z = -i\gamma_1\gamma_2$

Rotation around a line in the x-y plane:

$P_{12} : |i\rangle \mapsto (|v_1\rangle \sigma_x + |v_2\rangle \sigma_y) |i\rangle$

Rotation around the z-axis:

$P_{12}P'_{12}$

(Braiding is restricted to $\pi/2$ rotations)
Demonstration of non-Abelian operations

Two fermions:

\[d_1 = \left(\gamma_1 + i \gamma_2 \right)/2 \]
\[d_2 = \left(\gamma_3 + i \gamma_4 \right)/2 \]

Basis: \[|n_1 n_2 \rangle \]

\[F_i = \frac{1}{\sqrt{2}} \left(\gamma_i + \gamma_{j+1} \right) \]

Initialize: \[|00 \rangle \]

To initialize and read out: detune away from degeneracy point
Coupled spin qubits and Majorana qubits

Goal: transfer quantum information from spin qubits to topological qubits, without being prone to charge noise

\[
H = H_D + \gamma_1 \left(\lambda_1 d_\uparrow - \lambda_1^* d_\uparrow^\dagger \right) + \gamma_2 \left(\lambda_2 d_\downarrow - \lambda_2^* d_\downarrow^\dagger \right)
\]
Filling or emptying the dot: entangles

Sweep from empty to full dot:

\[P_F = \frac{1}{\lambda} \left(-\lambda_1^* \gamma_1 d_\uparrow^\dagger - \lambda_2^* \gamma_2 d_\downarrow^\dagger \right) \]

Sweep from full to empty dot:

\[P_E = N \left(\lambda_1 \gamma_1 d_\uparrow + \lambda_2 \gamma_2 d_\downarrow \right) \]

\(N \): normalization factor

Possibilities:
- Transferring between spin & topological qubits
- Generating long-distance entanglement

Read more: arXiv:1107.5703
- Majorana bound states give clear spectroscopic features, both with and without a quantum dot.

- A Coulomb blockade setup is also sensitive to the parity relaxation.

- Single charge control allows one-qubit rotations.

- Non-Abelian manipulation using quantum dots coupled to two Majorana bound states.

\[F_i = \frac{1}{\sqrt{2}} (\gamma_i + \gamma_{i+1}) \]

- Spin selective tunneling allows transfer of quantum information between spin and topological qubits, without charge coupling.