Quantized circular photogalvanic effect in Weyl semimetals
Adolfo Grushin
Department of Physics, UC Berkeley et Institut Néel, CNRS & UGA
Tue, Feb. 14th 2017, 15:00-16:00
Bât. K, Salle R. Lemaire (K223), Institut Néel

Les personnes qui ne possèdent pas de badge CNRS doivent nous signaler leur venue avant lundi 13 février 15h45, afin d’ajouter leur nom à la liste des personnes autorisées à entrer sur le site.

Physical systems usually exhibit quantum behavior, such as superpositions and entanglement, only

The circular photogalvanic effect (CPGE) is the part of a photocurrent that switches depending on the sense of circular polarization of the incident light. It has been consistently observed in systems without inversion symmetry and depends on non-universal material details. We find that in a class of Weyl semimetals (e.g. SrSi2) and three-dimensional Rashba materials (e.g. doped Te) without inversion and mirror symmetries, the CPGE trace is effectively quantized in terms of the combination of fundamental constant e^3/h^2 with no material-dependent parameters. This is so because the CPGE directly measures the topological charge of Weyl points near the Fermi surface, and non-quantized corrections from disorder and additional bands can be small over a significant range of incident frequencies. Moreover, the magnitude of the CPGE induced by a Weyl node is relatively large, which enables the direct detection of the monopole charge with current techniques.

F. de Juan, A. G. Grushin, T. Morimoto, J. E. Moore, ArXiv : 1611.05887

Contact : Michel BENINI

 

Retour en haut