Synthesising arbitrary quantum states in a superconducting resonator

Department of Physics, University of California, Santa Barbara, CA 93106, USA

The superposition principle is a fundamental tenet of quantum mechanics: The quantum state of a physical system can simultaneously include measurably different physical states, thus allowing a quantum system to be “in two places at the same time.” The preparation of such superposed states, and their subsequent use, is the basis for quantum computation and simulation. Creating such complex superpositions in harmonic systems, such as the motional state of trapped ions, microwave resonators, or optical cavities, has presented a significant challenge, because such states cannot be obtained with classical control signals. Here we demonstrate the preparation and measurement of arbitrary quantum states in an electromagnetic resonator, superposing states with different numbers of photons in a completely controlled and deterministic manner. We synthesise the states using a superconducting phase qubit to phase-coherently pump photons into the resonator, employing an algorithm that generalises our previously-demonstrated method of generating photon number (Fock) states in a resonator. We completely characterise the resonator quantum state using Wigner tomography, equivalent to measuring the resonator’s full density matrix.

The quantum state of a resonator is extraordinarily rich, with infinitely many energy levels, of which each can have a non-zero amplitude. However, this richness is difficult to access when driving a resonator with a classical signal, as the two adjustable parameters of an on-resonant drive, the amplitude and the phase, give very limited control. Creating an arbitrary quantum state instead requires a non-linear element and a control scheme with many parameters. Here we demonstrate quantum state generation in a resonator by interposing a highly non-linear Josephson phase qubit between a superconducting resonator and a classical signal. A qubit has two quantum degrees of freedom, the relative amplitude and phase of its ground $|g\rangle$ and excited $|e\rangle$ energy eigenstates. This simplicity allows full quantum control of a qubit with a classical signal. By following a sequence of steps developed for trapped ions, where each step involves creating a particular qubit state and then having the qubit interact with the resonator for a controlled time, we synthesise arbitrary states in the resonator. The preparation is deterministic, unlike methods involving probabilistic projective measurements. After the preparation, we analyse the resonator state using Wigner tomography, mapping out the Wigner quasi-probability distribution, from which we extract the resonator’s full density matrix.

The quantum circuit we used is shown in Fig. 1. The phase qubit is capacitively coupled to a superconducting coplanar waveguide resonator, and the circuit includes control lines for the qubit and resonator, and a qubit measurement circuit described elsewhere. This circuit is similar to that used previously to generate Fock states in a resonator, here, however, most of the superconducting wiring is made of rhenium in place of aluminium, and we removed unnecessary dielectric, reducing dissipative elements in the circuit.

The qubit frequency $\omega_q/2\pi$ can be externally adjusted, while the resonator frequency $\omega_r/2\pi = 6.570$ GHz is fixed. This allows us to describe the system with a Hamiltonian in the resonator rotating frame, so that the resonator states have zero frequency:

$$\frac{\hbar}{i} = \Delta(t)\sigma_+\sigma_- + \left(\frac{\Omega}{2}\sigma_+ + \frac{\Omega_g(t)}{2}\sigma_+\right) + \text{h.c.}$$

Here σ_+ and σ_- (σ^+) are the qubit (resonator) raising and lowering operators, and h.c. is the Hermitian conjugate of the terms in parentheses. The first term is the qubit energy, which appears as the qubit–resonator de-tuning $\Delta(t) = \omega_q(t) - \omega_r$. The first term in the parentheses gives the qubit-resonator interaction, proportional to the fixed interaction strength $\Omega/2\pi = 19$ MHz, while the second and third terms give the effect of the external microwave drive signals applied to the qubit and resonator; these parameters $\Omega_q(t)$ and $\Omega_r(t)$ are complex to account for amplitude and phase. All control signals in Eq. (1) vary on a ~ 2 ns time scale, long compared to $2\pi/\omega_r$, so counter-rotating terms in Eq. (1) are neglected.

Although the coupling Ω is fixed, we control the qubit-resonator interaction by adjusting the qubit frequency between two operating points, one with qubit and resonator exactly on resonance ($\Delta_{on} = 0$), the other with the qubit well off-resonance ($|\Delta_{off}| \gg \Omega$). On resonance, the coupling will produce an oscillation where a single photon transfers between qubit and resonator with unit probability, alternating between states with e.g. the qubit in its ground state with n photons in the resonator, $|g\rangle \times |n\rangle = |g, n\rangle$, and the qubit in its excited state with $n-1$ photons in the resonator, $|e\rangle \times n\rangle = |e, n-1\rangle$; this occurs at the n-photon “Rabi-swap” frequency $\sqrt{n}\Omega$. Off resonance, the system oscillates at a higher frequency $\sqrt{n}\Omega^2 + \Delta^2$ but with reduced $|e, n-1\rangle$ probability $n\Omega^2/(n\Omega^2 + \Delta^2) < 1$. This de-tuning dependence is shown in Fig. 1 for $n = 1$ photons and small de-tunings $|\Delta| \lesssim \Omega$. At our typical off-resonance operating point $\Delta_{off} \approx -25\Omega$, the photon transfer probability is only 0.0016 n, so the coupling is essentially turned off.

We determine from Fig. 1 the flux bias for on-resonance...
Our goal is to synthesise arbitrary N-photon states in the resonator with the qubit in its ground state, disentangled from the resonator. Our target state for the coupled system is

$$|\psi\rangle = |g\rangle \times \sum_{n=0}^{N} c_n |n\rangle$$

with complex amplitude c_n for the n-th Fock state. As pointed out by Law and Eberly, these states can be generated by sequentially exciting the qubit into the proper superposition of $|g\rangle$ and $|e\rangle$, and then performing a partial transfer to the resonator. As illustrated in Fig. 2, a sequence generating the desired state can be found by solving the time-reversed problem: Starting with the desired final state, we first transfer the amplitude of the
highest occupied resonator Fock state to the qubit, then remove the excitation from the subsequently de-tuned qubit using a classical microwave signal, and repeat until the ground state |g,0⟩ is reached. The actual control signals are sequenced in the normal (un-reversed) order to generate the desired final state from the initial ground state. We note that the Law and Eberly protocol assumes an adjustable phase for the qubit-resonator coupling Ω, which Eq. 1 does not allow; instead, we correct the relative phases of |g, n⟩ and |e, n−1⟩ by adjusting the time t_n over which the qubit and resonator are de-tuned.

To calibrate the actual microwave signals needed to implement this sequence, it is impractical to individually tune each sequence step, because the intermediate states are quite complex and measuring them time-consuming. Instead we perform careful calibrations of the experimental system independent of the particular state preparation (see Supplementary Information).

An initial check of the outcome of the preparation is to determine if the qubit ends up in the ground state |g⟩, as desired. We find that this holds with a probability typically greater than 80%, the remaining 20% being compatible with decoherence during the preparation sequence (see Supplementary Information).

With the qubit near its ground state and not entangled with the resonator, we can use the qubit to measure the resonator state. By bringing the qubit and resonator into resonance for a variable time τ and subsequently measuring the probability P_e for the qubit excited state, we can determine the n-photon probabilities P_n = |c_n|^2, correcting for measurement fidelity and initial qubit state probability (see Supplementary Information). In Fig. 2(a) we compare P_e(τ) for the experimentally prepared states |ψ_a⟩ = |1⟩ + |3⟩ and |ψ_b⟩ = |1⟩ + i|3⟩, showing the expected superposed oscillations corresponding to the |1⟩ and |3⟩ Fock states. This measurement however only yields the probabilities P_n. The relative phases of the Fock states are lost, so the states |ψ_a⟩ and |ψ_b⟩ cannot be distinguished.

To measure the complex amplitudes c_n, we need to probe the interference between the superposed Fock states. This may be done using Wigner
Wigner tomography, which maps out the Wigner quasi-probability distribution \(W(\alpha) \) as a function of the phase space amplitude \(\alpha \) of the resonator (see Supplementary Information). Wigner tomography is performed by following the functional definition

\[
W(\alpha) = \frac{2}{\pi} \langle \psi | D^\dagger (-\alpha) \Pi D(-\alpha) | \psi \rangle.
\] (3)

The resonator state \(|\psi\rangle \) is first displaced by the operator \(D(-\alpha) \), implemented with a microwave drive pulse \(-\alpha = (1/2) \int \Omega_r(t)dt\). The photon number probabilities \(P_n \) are then measured and finally the parity \(\langle \Pi \rangle = \sum_n (-1)^n P_n \) evaluated. The corresponding pulse sequence is depicted in Fig. 4.

Measured and calculated Wigner functions are shown in Fig. 4 for the resonator states \(|0\rangle + |N\rangle \), with \(N = 1 \) to 5. The structures of the Wigner functions match well, including fine details, indicating that the superposed states are created and measured accurately. The density matrices for each state are also calculated (see Supplementary Information) and are as expected. To our knowledge this is the first direct mapping of non-classical Wigner functions with sufficient detail to display such fine features.

In prior experiments, the Wigner function of non-classical states has either been calculated via an inverse Radon transform, or measured at just enough points to fit the density matrix, from which the Wigner function is reconstructed. The high resolution direct mapping of the Wigner function used here is an important verification of the state preparation. The good agreement in shape shows that very pure superpositions of \(|0\rangle \) and \(|N\rangle \) have been created. Slight deviations in amplitude can be due to small errors in the read-out process, the relative amplitudes of the \(|0\rangle \) and \(|N\rangle \) states, or statistical mixtures with other Fock states.

The data in Fig. 4 do not demonstrate phase control between Fock states, as a change in the relative phase of a two-state superposition only rotates the Wigner function. The phase accuracy may be robustly demonstrated by preparing states with a superposition of three Fock states, as changing the phase of one state then changes the shape of the Wigner function. Figure 4 shows Wigner tomography for a superposition of the \(|0\rangle \), \(|3\rangle \) and \(|6\rangle \) Fock states, where the phase of the \(|3\rangle \) state has been changed in each of the five panels. The shape of the calculated and measured Wigner functions again agree, including small details, indicating that precise phase control has been achieved. The calculated and measured density matrices also match well.

In conclusion, we have generated and measured arbitrary superpositions of resonator quantum states. State preparation is deterministic and “on-demand”, requiring no projective measurements, and limited to about ten photons, mainly by energy decay in the resonator. The accuracy of the prepared states demonstrates that a
qubit, when controlled with high fidelity, is ideally suited for synthesising and measuring arbitrary quantum states of light.

Acknowledgements: Devices were made at the UCSB Nanofabrication Facility, a part of the NSF-funded National Nanotechnology Infrastructure Network. We thank Michael Geller for valuable discussions. This work was supported by IARDA under grant W911NF-04-1-0204 and by the NSF under grant CCF-0507227.

Author contributions: M.H. performed the experiments and analysed the data. H.W. fabricated the sample. J.M.M. and E.L. designed the custom electronics and M.H. developed the calibrations for it. M.A. and M.N. provided software infrastructure. All authors contributed to fabrication process, qubit design or experimental setup. M.H., J.M.M., and A.N.C. conceived the mental setup. M.H., J.M.M., and A.N.C. conceived the experiment and co-wrote the paper.

Supplementary Information

I. PULSE SEQUENCES TO GENERATE STATES

In Table II we give the detailed pulse sequence needed to generate the state $|g\rangle \times ((1) + i|3\rangle)$. We use three types of pulses that: Change the qubit state (Q), swap the qubit state into the resonator (S), and correct the relative phases of the interacting states (P).

In the main article we display the measured and calculated Wigner functions for the resonator states $|0\rangle + |N\rangle$ and for the states $|1\rangle + \exp(ik\pi/8)|3\rangle + |6\rangle$, $k = 0$ to 4. In Fig. 5 we display the “Voodoo cat” state, which involves Fock states as high as $|9\rangle$, fully demonstrating the range of states we can currently prepare.

II. WIGNER TOMOGRAPHY AND DENSITY MATRIX

The Wigner function $W(\alpha)$ and density matrix ρ are related via the trace

$$W(\alpha) = \frac{2}{\pi} \text{Tr} \left(D(-\alpha) \rho D(\alpha) \right).$$

To measure the Wigner function, we first prepare the resonator state, as given by the density matrix ρ. During state analysis, microwaves drive the resonator and coherently displace the resonator state by $-\alpha = (1/2) \int \Omega_\tau(t) dt$, as described by the operator $D(-\alpha) = D^{\dagger}(\alpha) = \exp(\alpha a^* - \alpha a)$. For the displaced resonator state $\rho' = D(-\alpha) \rho D(\alpha)$, we determine the diagonal elements ρ'_{nn} by measuring $P_n(\tau)$ during a swap interaction (see below). As the qubit states are eigenstates of the parity operator Π with eigenvalues 1 (-1) for even (odd) Fock states, the Wigner function can simply be calculated as

$$W(\alpha) = \frac{2}{\pi} \sum_n (-1)^n \rho'_{nn}(-\alpha).$$

$	\psi\rangle$	$	g(0.707	1\rangle + 0.707	3\rangle)\rangle$			
3:S $\tau_n \Omega$	1.81							
3:Q $\varrho_n \Omega$	3.14							
$	\psi_2\rangle$	$	g(-0.557	0\rangle + 0.707	2\rangle + 0.436	e	\rangle	1\rangle$
2:P $t_2 \Delta$	-1.57							
2:S $\tau_2 \Omega$	1.44							
2:Q ϱ_2	$-2.09 - 2.34i$							
$	\psi_1\rangle$	$(0.553 - 0.62i)	g	\rangle	1\rangle - (0.371 + 0.416i)	e	\rangle	0\rangle$
1:P $t_1 \Delta$	-3.03							
1:S $\tau_1 \Omega$	1.96							
1:Q ϱ_1	$-2.71 - 1.59i$							
$	\psi_0\rangle$	$(0.197 - 0.98i)	g	\rangle	0\rangle$			

TABLE I: Sequence of operations to generate the resonator state $|\psi\rangle = |1\rangle + i|3\rangle$, used for the measurements described in Fig. 2. The sequence is computed top to bottom, but applied bottom to top. The area and phase of the qubit drive is $q_n = \int \Omega_\tau(t) e^{i\Delta_n \tau} dt$ ($t = 0$ being the time when the qubit is tuned into resonance directly after the pulse q_n), the time of the swap operation is τ_n, and the phase delay time is t_Δ. We note that the Wigner function can also be calculated directly from the trace $P_n(\tau)$ via a Fresnel transform, requiring only a short time scan, but yielding slightly less precise results in our case. The parity can also be measured directly in the dispersive limit, obviating the time scan, but the dispersive regime is incompatible with the parameters we need for state preparation.

The amplitude scale and the phase of the microwave pulse α are calibrated by a best fit between the measured and calculated Wigner distributions. Small variations (~ 5%) in the scale calibration were found for the various states measured here, including the coherent state, and thus an average was used. The magnitude of the scale factor is in good agreement with the attenuation of the microwave line and its coupling capacitor.

The density matrix can be calculated from the Wigner function by inverting Eq. 4. However, to make full use of the measured data, we instead calculate the density matrix directly from the full set of measured photon number probabilities by solving for ρ the set of linear equations

$$\rho'_{nn} = \langle n|D(-\alpha_m)\rho D(\alpha_m)|n\rangle = \sum_{j,i} M_{nmji} \varrho_{ji},$$

one for each extracted photon number n and one for each measured displacement α_m. The matrix

$$M_{nmji} = \langle j|D(\alpha_m)|n\rangle^* \langle i|D(\alpha_m)|n\rangle,$$

is calculated by expanding the displacement operator $D(\alpha) = \exp(\alpha a^* - \alpha a)$ in the Fock basis:

$$\langle p|D(\alpha)|q\rangle = e^{-|\alpha|^2/2} \sqrt{p!q!} \sum_{k=0}^{\min(p,q)} \frac{\alpha^k (\alpha^*)^{q-k}}{k!(p-k)!((q-k))}.$$
in Fig. 4, the angle yielding close to the ability is not zero, corresponding to a Bloch vector point-density matrix are very small, but the excited state prob-

gress this by performing state tomography of the qubit

To decoherence: The preparation sequences for the states

However, we attribute the reduction in visibility mostly
due to less precise tune-up of the sequences for some of

The qubit is mostly disentangled from the resonator and

last two terms of Eq. 9, simplifying this relation to

We solve the largely overdetermined linear system of

We perform photon number readout on the resonator

At the end of the state preparation sequence for the

This “Voodoo cat” state is an equal superposition of coherent

We normalise ρ.

III. PHOTON NUMBER READOUT

At the end of the state preparation sequence for the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

We perform photon number readout on the resonator

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the

Because the qubit is only weakly entangled with the
where \(P_n \) is the probability for the qubit to start in its ground state and \(P_n = \rho_{nn} \) are the diagonal elements of the resonator density matrix. The probabilities \(P_n \) may now be extracted from the measured time evolution \(P_n(\tau) \) by performing a least-squares fit of the data with cosine oscillations at the various frequencies \(\sqrt{\Omega} \).

We measure the Rabi coupling frequencies \(\sqrt{\Omega} \) by driving the resonator with a coherent microwave pulse, generating a coherent state, then measuring \(P_n(\tau) \). Fourier transforms of \(P_n(\tau) \), taken for a range of drive amplitudes, give sharp peaks at frequencies \(\sqrt{\Omega} \) that are used for calibration.

With \(P_n \) and \(\sqrt{\Omega} \) already determined, calculating \(P_n \) from Eq. (10) becomes a linear least-squares fit, which yields stable and robust results.

In our earlier experiment,\(^8\) decay of resonator states during measurement required the introduction of visibility factors. Because coherence times are longer here, visibility factors would be greater than 95\% and are not absolutely required to correct for the decay of the Fock states during measurement. Nevertheless, the precision of the photon number analysis was improved by including decoherence into the calculation of \(P_n(\tau) \). We numerically solve the Lindblad master equation\(^26\) for the qubit coupled to Fock states, including the same Hamiltonian evolution as Eq. (1) but with the relaxation times \(T_{1,q} = 3.5 \mu s \) for the resonator and \(T_{1,q} = 650 \text{ ns} \) for the qubit and using the dephasing time \(T_{\phi,q} = 300 \text{ ns} \) for the qubit (resonator dephasing is much slower than 3.5 \(\mu s \) and not included in the model). Note that we use a larger qubit dephasing time than measured for the qubit alone, which accounts for the stabilising effect of the resonator on the qubit. As we do not know of any theory precisely predicting this stabilising effect, the qubit dephasing parameter was adjusted to best match the observed time evolution.

Although we typically fit for photon numbers up to \(n_{\text{fit}} = 15 \), the results are significant only up to \(n_{\text{max}} = 10 \). We fit more photons than needed because the oscillations from \(P_n \) are not orthogonal, so \(P_n \) from the highest \(n \) absorbs some probability from non-fitted photon numbers.

IV. PULSE CALIBRATION

As illustrated in Table II the intermediate states are quite complex during state generation. This complexity discourages the measurement of intermediate states to tune the sequences. Instead, we carefully calibrate the fundamental operations, the single qubit Rabi pulse, the qubit-resonator photon swap, and the qubit-resonator phase accumulation, thus obviating the need to tune up individual sequences. The calibrations of the microwave electronics described here are fully automated. The qubit calibrations are semi-automated and require standard adjustments of the bias and read-out, which are not detailed here.

A. Calibration of the microwave circuitry

We control the qubit using flux bias and microwave pulses. The flux bias is applied via two separate signal lines, one heavily low-pass filtered but weakly attenuated allowing large flux bias excursions at low speed, the other unfiltered but heavily attenuated allowing small excursions at high rates. The lines are combined in the experimental cryostat at a custom inductive bias-tee just outside of the sample mount. This summed current inductively couples magnetic flux to the qubit. The microwave line has two broadband (20 GHz) 20 dB attenuators placed at 4 K and the mixing chamber and capacitively couples current to the qubit.

The slow flux-bias waveform is generated by a custom low-speed and high-accuracy digital to analog converter (DAC) based on the MAX5423\(^\text{a}\). For low noise performance, its digital inputs and clock are held constant during qubit operation.

The fast flux-bias waveform is generated by custom DAC electronics\(^b\) based on the AD9736, which gives 14 bit resolution at a 1 GHz sampling rate. Its two differential outputs are sent through separate Gaussian low-pass filters with a 3 dB roll-off frequency of 200 MHz, and then to a differential amplifier (THS4509) for low distortion amplification and conversion to a single-ended output. To correct for imperfections in this electronics chain, we first generate a step-edge output from the DAC and measure with a sampling oscilloscope the output waveform. Using de-convolution techniques, we then digitally correct any desired waveform with the measured response of the step-edge.

The 200 MHz low-pass filters considerably suppress signals close to the DAC Nyquist frequency of 500 MHz. The de-convolution correction compensates for this suppression and greatly amplifies signal components close to the Nyquist frequency, causing various artifacts. We add a software low-pass filter to prevent this amplification of high frequency components, as well as ringing due to a sharp cutoff at the Nyquist frequency. We found that a Gaussian low-pass filter with a 3 dB frequency of 150 MHz, worked well with our electronics chain.

This calibration from the sampling oscilloscope eliminates all distortions outside the cryostat. Wiring imperfections inside the cryostat may also be measured and corrected by using the qubit as a sampling oscilloscope. We use the flux-bias dependence of the qubit transition frequency to measure how the actual flux bias evolves in time: We first tune a 8 ns FWHM resonant microwave pulse. The flux bias following the test waveform will settle to its pre-waveform value, and the microwave swap pulse will be precisely resonant with the

[31] DAC electronics

[AD9736] Digital to Analog Converter

[THS4509] Differential Amplifier

<table>
<thead>
<tr>
<th>DAC</th>
<th>Resolution</th>
<th>Sampling Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AD9736</td>
<td>14 bit</td>
<td>1 GHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Filters</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>200 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step-edge Output</th>
<th>Measured Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC</td>
<td>Sampling Oscilloscope</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Artifacts</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ringing</td>
<td>Gaussian Filter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calibrating Waveform</th>
<th>Desired Waveform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step-edge</td>
<td>Digitally Corrected</td>
</tr>
</tbody>
</table>
\(|g\rangle \rightarrow |e\rangle\) transition. In actuality, we find that the qubit frequency is slightly de-tuned, so the \(\pi\)-pulse fidelity is reduced. We then add a flux bias offset to bring the qubit back on resonance and return the fidelity of the \(\pi\)-pulse to its original value. By scanning flux offset and timing, we can map out the response of the qubit to the flux bias step. We then correct for this response in the same way as for the response function measured with the oscilloscope. Because this method has only a limited time resolution due to the finite length of the microwave pulse, we correct for fast distortions outside the cryostat.

For the microwave drive for qubit and resonator we use a single microwave source (Anritsu 68369A/NV), modulated by IQ mixers (Marki IQ0307LXP). The I and Q channels of each mixer are driven by two DAC outputs identical to the fast flux bias. The mixers generate single-sideband microwaves that can vary in frequency, phase, and amplitude. We phase-lock all five DAC channels to an external 10 MHz clock, and digital communication between the DACs ensures that the waveforms are synchronised with each other and the microwave source. We perform 3 types of calibrations for the microwave signals:

DAC zero adjustment ensures that the IQ mixer output can be turned off precisely, eliminating bleed-through of the carrier signal. In principle, a small magnitude of carrier leakage is not a problem because, as we use sideband mixing, the carrier frequency is typically not resonant with the qubit or resonator. However, we typically place the carrier frequency between qubit and resonator frequency. Since the qubit is swept through the carrier frequency each time it is tuned into resonance with the resonator, carrier leakage could slightly perturb the qubit state. To calibrate the I and Q DAC values needed to zero out the mixer, we measure the mixer output with a spectrum analyser in a very narrow frequency band around the carrier frequency. A simple search allows both I and Q to be zeroed: We first fix the Q channel DAC and measure the power for 3 different I DAC values, finding the minimum from a parabolic fit. We then fix this I value and measure the power for three Q values, finding the best Q value in the same way. This sequence is repeated over increasingly narrow ranges until the resolution of the DAC is reached. We typically find carrier on/off ratios of > 70 dB. We also find DAC values for zero are strongly dependent on carrier frequency.

Sideband mixing generates a shift \(\Delta \omega\) in the carrier frequency \(\omega\) by applying a signal of frequency \(\Delta \omega\) to the I and Q ports of the mixer. A single sideband is generated when the signal to port Q is phase shifted by \(\pi/2\) with respect to port I. IQ mixers are imperfect, and deviations exist in both the amplitude sensitivities and the relative phase, which gives rise to an opposite frequency sideband at \(-\Delta \omega\). We cancel this undesired signal by adding to the digital I and Q waveforms a compensating signal of adjustable amplitude and phase at \(-\Delta \omega\). To adjust this compensating signal, we measure the undesirable sideband signal with a spectrum analyser and adjust the real and imaginary part of the compensation to achieve an absolute minimum, with the same search pattern as for zeroing of the DACs. We find the compensation depends both on the carrier frequency \(\omega\) and the sideband frequency \(\Delta \omega\).

Deconvolution calibration is similar to that performed for the flux bias signal. Here, we measure the pulse response at microwave frequencies. After calibrating the DAC zero and sideband mixing, we apply a 1 ns impulse to port I and measure the output of the IQ mixer with a sampling oscilloscope. The impulse response is then obtained by numerically demodulating the carrier frequency. The same measurement is then repeated for port Q. As this calibration is slow, it is performed only for a single carrier frequency, typically 6 GHz. This simple calibration is sufficient because the microwave signals do not have stringent requirements on the pulse shape. We find precise calibration of the sideband mixing is of greater importance.

B. Qubit microwave pulses

When microwave pulses are used to generate qubit transitions \(|g\rangle \leftrightarrow |e\rangle\), excitations to higher energy levels must be avoided, in particular the next higher eigenstate \(|2\rangle\). The \(|2\rangle \leftrightarrow |e\rangle\) transition frequency is typically 200 MHz lower than \(|e\rangle \leftrightarrow |g\rangle\) due to the limited non-linearity of the phase qubit. Microwave pulses for \(|g\rangle \leftrightarrow |e\rangle\) therefore need to have low spectral component at the \(|e\rangle \leftrightarrow |2\rangle\) transition frequency, so the pulses must be sufficiently long and accurately shaped. We program the pulses to have Gaussian envelopes with 8 ns FWHM, which were measured to yield negligible population (\(\lesssim 10^{-4}\)) of the \(|2\rangle\) state.\(^{32}\)

We calibrate single qubit Rabi pulses with the \(|g\rangle \leftrightarrow |e\rangle\) transition, which corresponds to a rotation \(\pi\) on the Bloch sphere. For this calibration, we maximise the measured probability \(P_e\) by adjusting the amplitude and frequency of the microwaves, as described in a previous experiment\(^{29}\) that obtained a gate fidelity of 98 \%. For Bloch sphere rotations with smaller angles, we simply scale the pulse amplitude. Nonlinearities in the DAC and from the AC Stark effect generate errors of less than 2 \% in the rotation angle.

C. On-resonance tuning

We typically de-tune the qubit by \(\approx 500\) MHz below the resonator frequency for a qubit-resonator coupling of \(\Omega/2\pi \approx 20\) MHz. By operating below the resonator frequency, the qubit is not swept through this resonance when measured and higher level transitions of the qubit do not cross the resonator frequency. To calibrate the flux bias pulse that tunes the qubit into resonance with the resonator, we prepare the qubit in the \(|e\rangle\) state using a microwave Rabi pulse (see above), apply a flux bias tuning pulse with a variable amplitude and duration, and
FIG. 6: Calibration of the photon swap operation, from the measurement of optimum swap time versus $1/\sqrt{n}$. The optimum time for the n-photon swap pulse is measured by maximising state transfer to the resonator, resulting in the generation of Fock states. Because coupling strength scales as \sqrt{n}, the data should fall on a line. The slope and offset time of this line is used to calibrate the swap operation for arbitrary state generation.

then measure the excited state probability P_e. Close to resonance, a single photon is swapped between the qubit and resonator at the frequency

$$\Omega' = \sqrt{\Omega^2 + \Delta^2}$$

which equals the coupling strength Ω when the qubit and resonator are on resonance ($\Delta = 0$). The resonance condition is precisely measured by varying the tuning pulse amplitude and duration τ, mapping out P_e as shown in Fig. 2 of the article. We then Fourier transform $P_e(\tau)$ for different flux biases, and fit the maxima of the Fourier transform to Eq. (11) to find the flux bias amplitude that gives the minimum swap frequency. This fit is shown in Fig. 2d of the article.

D. Swap pulse calibration

With the magnitude of the flux bias pulse determined from the previous calibration step, we next precisely adjust the length of the swap pulse so that the photon is completely transferred from the qubit to the resonator. We optimise transfer by minimising the probability P_e of finding the photon in the qubit after the transfer.

The shape of the rising and falling edges of the flux bias pulses is defined by the 150 MHz numerical Gaussian low-pass filter (see section IV A), and is error-function shaped with a 10% to 90% rise time of 2.3 ns. The finite duration of the pulse rise and fall time, during which the qubit is approaching resonance while interacting with the resonator, limits the fidelity of the photon transfer. To compensate for this effect, we add a Gaussian-shaped overshoot to the beginning and end of the pulse, bringing the qubit frequency slightly past the resonator frequency. The Gaussian is centred at the step edge and its FWHM of 2.1 ns is also defined by the numerical low-pass filter. The pulse duration and overshoot height are adjusted alternatingly several times to reach the global minimum in P_e.

Once the transfer of the first photon is optimised, we repeat the procedure for the second photon: A microwave Rabi pulse is added immediately after the first swap pulse bringing the qubit into the $|e\rangle$ state, and then the swap pulse is optimised for minimum P_e. We typically repeat this optimisation procedure for up to six photons, which represents generation of Fock states in the resonator. The amplitude of the optimal overshoot only depends weakly on photon number. As calibration cannot depend on photon number for arbitrary state generation, we average the overshoot and apply this value for all the swap pulses. Using the average overshoot, we then repeat the calibration procedure for only the pulse duration, finding swap times for up to 15 photons.

We use these swap times to calibrate the swap operation for arbitrary state generation. Since the coupling strength scales as \sqrt{n}, where n is the photon number, the n-photon swap time will result in a swap angle of $\phi = \pi/\sqrt{n}$ when applied to the ground state of the resonator. Thus, all swap times should fall on a line when plotted versus $1/\sqrt{n}$, as shown in Fig. 6. Accurate scaling with photon number is crucial for generating arbitrary photon states, and its slope and intercept give the calibration for the swap operation.
E. Phase accumulation rate

When the qubit is detuned from the resonator, the $|e, n\rangle$ states accumulate phase with respect to the $|g, n+1\rangle$ states at a rate $\Delta \omega_{|e\rangle} = \omega_q - \omega_r$, roughly $-2\pi \times 500$ MHz. For generating states more complex than Fock states, this phase must be taken into account. To calibrate phase accumulation, Ramsey interferometry is used between the qubit and resonator: We first prepare the qubit in the $|e\rangle$ state with a swap pulse, and then perform a half-swap to the resonator. After a variable time t we then perform a second half-swap, and measure P_e as a function of t. As seen in Fig. 4 the probability oscillates sinusoidally at the phase accumulation rate. The two half-swaps add to a full swap, yielding a minimum P_e, when the delay time t yields a phase accumulation of a multiple of 2π. For phase accumulation of π, the second half-swap undoes the first half-swap, yielding a maximum value for P_e. The oscillation allows a precisely calibration of phase accumulation when the qubit and resonator are detuned.

Note that the timing of the pulses in Fig. 2 require nearly continuous variation of t. The pulse edges can be adjusted for a time much less than the 1 ns DAC update time because the step edges are generated from several DAC points. As illustrated in Fig. 6 we can adjust and control the step edges in the 10 – 50 ps range.

31 For detailed information and schematics see http://www.physics.ucsb.edu/~martinisgroup