
Multiscale method for Heisenberg spin simulations

Thomas Jourdan,1 Alain Marty,2 and Frédéric Lançon1,*
1Laboratoire de simulation atomistique (L_Sim), SP2M, INAC, CEA, 38054 Grenoble Cedex 9, France

2Laboratoire nanostructures et magnétisme (NM), SP2M, INAC, CEA, 38054 Grenoble Cedex 9, France
�Received 14 March 2008; published 17 June 2008�

A multiscale method that couples classical Heisenberg model to micromagnetics in a unified formalism is
presented. It is based on a multiresolution adaptive finite difference mesh, which ensures significant reduction
of the number of variables and computation time with respect to either atomistic or micromagnetic simulations,
together with a precise description of the modeled system where necessary. The hierarchical structure of the
mesh is used to compute efficiently the dipolar field by means of a fast multipole method. The underlying
atomistic approach is particularly useful to handle magnetic singularities and describe structural defects. The
method is applied here to the case of a magnetic vortex and a thin layer of FePt with a microtwin. Results are
compared to fully atomistic and micromagnetic simulations when possible.
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I. INTRODUCTION

Modeling a magnetic system may require to describe pre-
cisely a particular area, either because the atomic structure
should be taken into account,1,2 or because the magnetic con-
figuration exhibits steep variations. In this case micromag-
netic models3 fail to give a satisfying description and atom-
istic models must be considered, which induces a much
higher amount of computational effort if the modeled system
is large. Indeed to correctly handle the long-ranged dipolar
effects, some parts of the system that are uniformly magne-
tized have to be included in the simulation.

Multiscale modeling provides an elegant way to reduce
the computational cost associated with a fully atomistic
simulation by describing the system with a high resolution
only where it is necessary. In the case of magnetic simula-
tions, modeling at atomic scale may be achieved using clas-
sical Heisenberg model. The magnetic energy within such a
model can be written as a sum of on-site terms and pair
interactions:

E = �
s=1

na

�
t=1

s

Est, �1�

where na is the number of atomic spins. The basic idea of a
multiscale method consists of reducing the number of vari-
ables by gathering spins, thus writing:

E � �
s=1

n

�
t=1

s

Est + �
S=1

N

�
t=1

n

ESt + �
S=1

N

�
T=1

S

EST. �2�

The notations are the following: n is the number of atomic
spins in the multiscale approach, N is the number of mac-
rospins �micromagnetic nodes�, such that N+n�na. In the
rest of the paper, lowercase indexes s and t refer to atomic
quantities and uppercase indexes S and T to macrospins.
Greek letters � and � are used to refer to atomic sites or
macrospins, which are called “nodes” regardless of their
type.

Up to now only a few works have been devoted to mul-
tiscale simulations in magnetism. Some of them use a mul-
tiresolution scheme within a micromagnetic approach, either

with finite difference method �FDM�4 or finite element
method �FEM�.5 Methods that couple micromagnetics to the
Heisenberg model have been used to describe systems with
grain boundaries1 or an interface between two materials.6

Modeling of dynamics and the influence of temperature have
also been addressed mainly for simple systems.7–9

We propose here an approach that seamlessly couples mi-
cromagnetics to the Heisenberg model within a single multi-
scale formalism. An adaptive finite difference method is used
to approximate the micromagnetic part of the system. It has
been preferred to finite element method, because the con-
strained remeshing in this latter method, often performed by
Delaunay triangulation,10,11 adds extra complexity and may
require significant computation time. Furthermore, the hier-
archical structure and geometrical regularity of a finite dif-
ference grid can be used to compute the dipolar field with a
fast summation scheme, regardless of the nature of the nodes
�micromagnetic or atomic�. In the following we will focus on
equilibrium states. Dynamics and thermal effects will not be
included in the simulations.

We first describe the formalism for the different energy
terms �Secs. II and III�. Numerical considerations on the ap-
proximations and the remeshing are addressed in Sec. IV.
The multiscale method is used in two model cases, a thin
square element containing a vortex and a layer of FePt with
a structural defect �Sec. V�.

II. EXCHANGE AND ANISOTROPY TERMS

A. Exchange energy

Within the Heisenberg model, the exchange energy be-
tween two atomic spins s and t reads:

Est
ex = − Jstms · mt = − Jstmsmt�s · �t, �3�

where �s and �t are unit vectors along ms and mt.
Assuming a low spatial variation of the magnetization, it

is possible to derive an expression of the associated density
in a continuous approach. A normalized vector field ��r� is
used to replace the atomic variables �s. In the case of a
ferromagnet or locally collinear �rigid� antiferromagnet, we
obtain �see Appendix A�:
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eex = �
p,q=1

3

Apq
��

�rp
·

��

�rq
, �4�

where A is the exchange stiffness tensor given by

Apq =
1

4Vc
�

s�Vc

�
t�V�s�

Jstmsmt�strst,prst,q. �5�

Vc is the volume of the primitive cell of the considered
crystal. The sum runs on all the atoms t in the neighborhood
V�s� of s, for each atom s in Vc. Parameter �st is equal to 1 or
−1 depending on the relative orientation, ferromagnetic or
antiferromagnetic, of the two spins s and t. We have also
noted rst,p=rt,p−rs,p. In the following we will only consider
the case when A is diagonal, so that Apq=Ap�pq. In practice,
given that A is real and symmetric, it can always be ex-
pressed in an appropriate set of coordinates associated with
an orthonormal basis where it is diagonal.

In the continuum �micromagnetic� area, this formulation
must be discretized on a mesh. A finite difference scheme has
been adopted instead of finite element, partly because of the
simplicity of creating a mesh but also because it makes the
computation of the dipolar field by means of a fast multipole
method �FMM� more straightforward �see Sec. III�. Given
that ���=1, the micromagnetic formulation of the exchange
energy in a volume V can be expressed in two equivalent
ways:

Eex = �
V
�
p=1

3

Ap� ��

�rp
�2

d3r , �6�

Eex = − �
V
�
p=1

3

Ap� ·
�2�

�rp
2 d3r . �7�

Both expressions can be envisaged for the discretization.
We consider for example the system of Figs. 1 and 2. We call
A the area of the interface between the boxes and d− �d+� the
distance between nodes S and S−1 �S+1�, so the volume
shared by the boxes is V−=Ad− �V+=Ad+�. hS is the width of
the box containing S and VS is its volume. Using either
second- or first-order polynomials for the interpolation, the
energy associated with node S due to neighbors S−1 and
S+1 can be written as

ES
ex = − 2AxVS�S ·

d+�S−1 + d−�S+1 − �d+ + d−��S

d+d−�d+ + d−�
�8�

for the second derivative expression �Eq. �7�	, and

ES
ex = Ax
V+

2
��S+1 − �S

d+
�2

+
V−

2
��S−1 − �S

d−
�2� �9�

for the first derivative one �Eq. �6�	.
In Figs. 3 and 4 we show the energy density of a domain

wall on a nonuniform mesh after the first step of energy
minimization in both cases. As can be seen, the stencil used
in Eq. �8� introduces numerical instabilities: The energy den-
sity of large boxes in contact with small boxes is underesti-
mated and these small boxes undergo an abnormal rise in
energy. The approach of Eq. �9� has therefore been adopted.
In a one-dimensional model, it consists of considering a lin-
ear variation of the angle of the magnetization between two
adjacent nodes.

The transition from the micromagnetic area to the atom-
istic area is done with the same assumption of a linear varia-
tion of the angle of the magnetization between two adjacent
nodes, one being atomic and the other one micromagnetic.
For the sake of simplicity we consider the transition between
a simple orthorhombic crystal of parameters a, b, and c and
the continuum, as shown in Fig. 5. The axes of this lattice are
aligned with the edges of the boxes to determine in a simple
way the volume shared by the nodes. Exchange coupling is
assumed to exist only between nearest neighbors. The tran-
sition between different levels in the continuum is also
shown in Fig. 5.

In all cases, it is possible to define exchange couplings J��

between nodes. If node � is micromagnetic ���S�, effective

S − 1 S S + 1

VS

d
−

d+

hS

FIG. 1. 1D model system for the calculation of the exchange
energy of node S with the second derivative approach �Eq. �8�	. The
volume to consider is in gray.

S − 1 S S + 1
V− V+

d− d+

hS

FIG. 2. 1D model system for the calculation of the exchange
energy of node S with the first derivative approach �Eq. �9�	. The
volumes to consider are shared by the boxes and are in gray.
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FIG. 3. �Color online� Energy density of a domain wall in a 1D
system on a nonuniform mesh, initially and after one iteration of
minimization. The energy is computed with the second derivative
approach �Eq. �8�	.
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coupling constants JS� account for the variation of the mag-
netization between the nodes:

ES�
ex = AxVS���S − ��

dS�
�2

→ JS� =
2AxVS�

dS�
2 .

VS� is the volume shared by nodes S and �. Considering
the coupling between the atomistic and micromagnetic re-
gions showed in Fig. 5, it can be written VSt=bcdSt. Due to
the separability of the exchange energy in contributions from
the variation of � along x, y and z �Eq. �6�	, independent sets
of nonoverlapping volumes can be defined for each direction.
This property does not hold if the exchange stiffness tensor
has off-diagonal terms.

At the boundaries of a system described within micro-
magnetic formalism, Brown’s condition should be verified. It
states that the derivative of the magnetization along the nor-
mal at the surface is zero that is in the case of Fig. 5:

� ��

�x
�

x=L

= 0 . �10�

To satisfy this condition we use a node outside the system,
noted V in Fig. 5, in a box which has the same size as the box
on the other side of the boundary. Within our approximation
of exchange energy, the derivative is zero if �V=�U. This
means that the energy density in the part of the system be-
tween U and V must be zero to respect Brown’s condition. In
practice, node V does not need to be explicitly defined.

B. Anisotropy energy

We consider here the case of a uniaxial anisotropy, but the
same treatment can be applied to all other types of aniso-
tropy. The magnetic anisotropy of an atomic site is

Es
a = Ks�1 − ��s · us�2	 , �11�

where us is the easy or hard axis of magnetization.
We have assumed in Sec. II A that the exchange energy

density is constant between two nodes; similarly we consider
that the magnetization is constant over a micromagnetic box,
so that the energy in a box of volume VS is also constant and
reads

ES
a = VSKS�1 − ��S · uS�2	 . �12�

KS is the anisotropy per unit volume and is deduced from
the atomic quantities, provided that the axes us are the same
and equal to uS for all atoms in the box.

III. DIPOLAR TERM

A. Energy formulation

The evaluation of the dipolar energy is the most compu-
tationally demanding part of a simulation, for it is a long-
range interaction. Using a direct summation in an atomistic
approach leads to a computation time that scales as na

2, where
na is the number of spins. As for the exchange and anisotropy
energies, we start with the dipolar interaction expressed for
classical atomic spins. The scalar magnetic potential created
by a dipole moment ms reads

�d�ms,r − rs� =
�0

4	
ms · �rs


 1

�r − rs�
� , �13�

so the dipolar energy between the two moments ms and mt is

Est
d = mt · �rt

�d�ms,rt − rs� . �14�

Similarly, the energy of interaction between an atomic
spin s and a continuous distribution of magnetization in a
volume VT, or between two continuous distributions of mag-
netization of volumes VS and VT, are

E�T
d = �

VT

MT�r� · �r
�
dd3r , �15�

where 
�
d is given in the two cases ���s or ��S� by


s
d�r� = �d�ms,r − rs�


S
d�r� = �

Vs

�d�MS�r��,r − r��d3r�. �16�

To be consistent with the exchange and anisotropy ener-
gies, we make the assumption that the magnetization is con-
stant over a box. We note this constant value MS. 
S

d can be
rewritten under the following form:


S
d�r� =

�0

4	
MS�

SS

�S · dS�

�r − r��
, �17�

where dS� is the outward surface element.
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FIG. 4. �Color online� Energy density of a domain wall in a 1D
system on a nonuniform mesh, initially and after one iteration of
minimization. The energy is computed with the first derivative ap-
proach �Eq. �9�	.
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FIG. 5. �Color online� Interface between atomistic and micro-
magnetic areas in the case of a simple orthorhombic lattice. The
boundary of the system is between nodes U and V.
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It is also possible to rewrite the energy:

E�T
d = MT�

ST


�
d�r��T · dS . �18�

In all cases, it is possible to express the energy as

E��
d = ��

t D����, �19�

where the matrix elements Dst
pq, DsT

pq, and DST
pq �p ,q=1,3� are

given by

Dst
pq =

�0

4	
msmt
 1

rst
3 �pq − 3

rst,prst,q

rst
5 � ,

DsT
pq =

�0

4	
msMT�

ST

rp − rs,p

�r − rs�3
dSq,

DST
pq =

�0

4	
MSMT�

ST

�
SS

1

�r − r��
dSp�dSq. �20�

Analytic expressions can be found for the two last matrix
elements.12 In these formulas, dSp=ep ·dS, where ep is the
unit vector along direction p. Two opposite surfaces with a
different sign for dSp contribute to a given direction p. In the
first expression, rst,p=rt,p−rs,p.

Despite the dramatic decrease in the number of variables
in the system due to the multiscale approach, the direct sum-
mation of all these dipolar energy terms is in practice still too
computationally demanding. In Sec. III B we present a fast
summation scheme to solve this problem.

B. Fast multipole method

The FMM, as introduced by Greengard and Rokhlin13 for
coulombic interactions, is an algorithm which relies on the
gathering of particles by means of multipole and local ex-
pansions to achieve an order N computation of a field or a
potential.

A fundamental aspect is the ability to separate in the ker-
nel the variables of the source �r� ,�� ,��� and those of the
target �r ,� ,��. This is done in the case of the coulombic
interaction of charged particles by the use of spherical har-
monics �in the following rrs��:

�c�r� = �
s=1

na 1

�r − rs��
= �

l=0

�

�
m=−l

l

Ml
mYl

m��,��
rl+1 . �21�

Coefficients Ml
m are known as the moments of the expan-

sion and are given by

Ml
m = �

s=1

na

rs�
lYl

−m��s�,�s�� . �22�

Conventions for the spherical harmonics Yl
m�� ,�� are

those of Ref. 14. The decomposition of the dipolar kernel can
be readily deduced from the previous expression:

�d�r� =
�0

4	
�
s=1

na

ms · �rs�
 1

�r − rs��
� =

�0

4	
�
l=0

�

�
m=−l

l

Ml
mYl

m��,��
rl+1

�23�

with

Ml
m = �

s=1

na

ms · �rs�
�rs�

lYl
−m��s�,�s��� . �24�

The method proceeds in two steps and uses a hierarchical
structure of boxes to gain efficiency: First the multipole ex-
pansions are formed and they are merged upwards in the
hierarchy to create the multipole expansions of larger boxes.
Then these expansions are converted into local expansions:

�d�r� =
�0

4	
�
l=0

�

�
m=−l

l

Ll
mrlYl

m��,�� , �25�

which means the origin is changed from the center of source
boxes to the center of target boxes. Local expansions are
merged as the hierarchy is traversed downwards.

This two-step process can be used regardless of the kind
of description for the sources and targets. Only the creation
of the multipole expansions and the evaluation of the energy
have to be adapted to each case.

The multipole expansion coefficients of the potential 
S
d

created by a uniform distribution of magnetization are de-
duced from Eqs. �17�, �21�, and �22�:

Ml
m = MS�

SS

r�lYl
−m���,����S · dS�. �26�

They are determined using the Cartesian expression of the
solid harmonics �see Appendix B�.

In practice, to evaluate the energy we do not use directly
expressions �14� and �18�. Instead we determine a corre-
sponding field b�, which is defined as the derivative of the
energy with respect to our variables ��. It is used to find the
direction of descent in the minimization of the energy. The
energy is then obtained from the expression of the field by:

Ed = −
1

2�
�

�� · b�. �27�

The field created by a node � on a node � is deduced from
expressions �14� and �18� as

bt = − ��t
E�t

d = −
�0

4	
mt�rt


�
d ,

bT = − ��T
E�T

d = −
�0

4	
MT�

ST


�
d�r�dS . �28�

It is worth noting that by rewriting this latest equation we
obtain that the field on a micromagnetic node is the average
of the field over the box containing this node:

bT = −
�0

4	
MT�

VT

�r
�
dd3r . �29�
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The conversion of a multipole expansion into a local ex-
pansion imposes that interacting boxes are far enough from
each other.14 When this is not the case, a direct summation
has to be done, using the set of equations in Eq. �20�. It is
worth mentioning that a box can be surrounded by boxes at
different levels, so this summation may extend beyond near-
est neighbors. Particular care has to be taken for neighbor
boxes that contain atomic and micromagnetic nodes.

C. Transition between atomistic and micromagnetic description

The computation of the dipolar interaction between near
atomic and micromagnetic nodes may lead to several diffi-
culties, namely �i� the energy of interaction between the
charged surface and the atomic spin is not well defined nu-
merically if the spin is on the surface and �ii� summing over
a lattice to compute the field implicitly takes into account the
geometry of the lattice, which does not occur for an atomic
site near a micromagnetic region.

This latest remark also applies to the computation of the
field in micromagnetic regions. Including the effects of the
lattice can be done using Lorentz’s approach which consists
of writing the local field as follows:3

bT,loc = bT + DT�T + �T�T, �30�

where DT is a matrix accounting for the magnetic charges at
the surface of a cavity around T, �T is a traceless matrix that
is determined by a summation on the lattice sites inside the
cavity, and bT is the field created by charges beyond the
cavity. The cavity must be sufficiently large to correctly take
into account the geometry effects included in �T, but �
should have at most linear variations in it, which is in prac-
tice always verified in micromagnetic regions.

The effect of the geometry of the lattice on the local field
is highlighted in Fig. 6, where a distortion of the lattice from
cubic to tetragonal is envisaged. We take �0=1 and keep the
value of the magnetization M equal to 1, so that a typical
demagnetizing field is also 1. It can be clearly seen that even
with moderate distortions, the contribution of �T to the di-
polar field cannot be neglected. However, a good precision
on this term can be reached by summing only on a few
atomic layers �Fig. 7�.

The last two terms of Eq. �30� are systematically added to
get the local field in micromagnetic boxes. To compute the
field on an atomic site near micromagnetic boxes, a summa-
tion on virtual lattice sites inside these boxes is used to de-
termine a dipolar interaction matrix between the atomic spin
and the macrospin. This enables one to correctly take into
account the lattice geometry and to remove the problem
noted in remark �i�.

The largest error on the field comes from the position of
the interface between the atomistic and micromagnetic re-
gions imposed by the mesh. It may differ from the position
ensuring a correct value of the magnetization around the in-
terface. The value of the field in the middle of an atomic
cavity with a large mismatch between the correct and actual
position of the interface is shown in Fig. 8. This effect im-
poses a minimum number of atomic layers around the atomic
sites to reduce the error. The summation on virtual lattice

sites that extends through near micromagnetic neighbors
helps to minimize the error and may be extended to further
neighbors if a higher precision is required.

IV. NUMERICAL CONSIDERATIONS

The properties of the mesh used to compute the energy
have not been specified so far. At each step, boxes can be
divided, resolved at the atomic scale or gathered according to
the spatial variations of the magnetization. The presence of
structural inhomogeneities can also force the description at
the atomic scale. The criteria used to remesh a given system
are derived in this section. For convenience, they are based
on the spatial variation of our variables �� but should ensure
a good evaluation of the energy. To explain the procedure,
we use in the following a unidimensional system.

We first consider the approximate value of the uniaxial
anisotropy energy of a box in such a unidimensional system.
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FIG. 6. �Color online� Dipolar field due to the lattice effects for
different tetragonal distortions c /a. The magnetization is along x or
z and the field is computed in the direction of the magnetization.
M =1 and �0=1, so a typical demagnetizing field is around 1. The
shape effects due the sample used for the summation are corrected
and do not contribute to the field.
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FIG. 7. �Color online� Relative error on the field due to the
lattice effects as a function of the number of layers taken into ac-
count to compute this field. The tetragonal distortion is c /a=3, but
the global shape of the system is cubic �no shape effect�.
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Energies are normalized by AK and distances by �=A /K.
h is the length of this box in units of �, so the energy reads at
order 2:

Eh
a = − �

−h/2

h/2

�� · u�2dx

= − �
−h/2

h/2 ���0 · u�2 + �1

2
x2 d2

dx2 �� · u�2�
0
�dx

= − h��0 · u�2 − � h3

24

d2

dx2 �� · u�2�
0
. �31�

The quantities tagged with zeros are taken in the middle
of the box. Our multiscale approach neglects the term at
order 2 in this expression, so the criteria to remesh should be
defined to minimize its contribution to the energy. Expanding
it leads to

� d2

dx2 �� · u�2�
0

= 2���0 · u�
�d2�

dx2 �
0

· u� + 
�d�

dx
�

0
· u�2� .

�32�

Similarly the exchange energy between two nodes sepa-
rated of h can be written at order 2 as

Eh
ex = h
�d�

dx
�

0
�2

+ � h3

24

d2

dx2
d�

dx
�2�

0
. �33�

Here the quantities subscripted by 0 are taken in the
middle of the two nodes. However the first derivative is not
known exactly and it should be replaced by its approxima-
tion at order 2:


�d�

dx
�

0
�2

= 
�+ − �−

h
�2

− � h2

12

d�

dx
�

0
· �d3�

dx3 �
0
, �34�

where �+ and �− are the values of � at the two nodes.
Therefore the second-order term in the energy is simply

� h3

24

d2

dx2
d�

dx
�2�

0
− � h3

12

d�

dx
�

0
· �d3�

dx3 �
0

=
h3

12

�d2�

dx2 �
0
�2

.

�35�

To refine a mesh, first and second derivatives of � should
therefore be taken into account: If in a box, the criteria

�h2�d�

dx
�2

� �

h2�d2�

dx2 � � �� �36�

are not met, then we either divide the box or resolve it at
atomic scale if it does not contain enough atoms. In our
simulations, � is taken equal to 0.04 and called �d. A different
value, �g=0.01, is considered to decide when boxes should
be gathered. This set of two criteria avoids oscillations of the
mesh between two configurations.

It is worth noting that it can be advantageous to adopt less
stringent conditions at the beginning of the minimization:
The obtained coarsened mesh is useful to propagate informa-
tion rapidly from one point of the system to another, thus
alleviating a drawback of nonpreconditioned or diagonally
preconditioned conjugate gradient methods. A typical case
where this strategy proves useful is the formation of a large
domain wall of width � in a unidimensional system contain-
ing initially an abrupt change of magnetization: For example
if � is around 1000 interatomic distances, the convergence is
obtained after 380 iterations without any change of criteria,
whereas with �d=0.26 and �g=0.06 at the beginning of the

0 20 40 60 80 100
Number of layers added

10−3

10−2

10−1

100
F
ie

ld

FIG. 8. �Color online� Influence of the mismatch between the
correct position of the interface between atomic/micromagnetic re-
gions and its actual position. M =1 and �0=1, so a typical demag-
netizing field is around 1. A high modification of the shape effect is
envisaged here for a simple cubic lattice: The four surfaces with
normals along �x̂ and �ŷ are shifted toward the center of the box
of a /2 �with a=1�, and the two surfaces along �ẑ are shifted away
from the center of the same quantity. See Fig. 9 for the geometry of
the system.

z

xy

a

FIG. 9. �Color online� System used to study the influence of the
position of the interface between atomic and micromagnetic regions
on the field on an atomic site. Here the field is computed on the
atomic site at the center of the box. The ideal position of the inter-
face is shown in dashed lines. In the figure, two layers of atoms
have been added around the atom at the center.
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minimization the convergence is reached after only 220 it-
erations. The use of a fully atomistic description results in a
convergence after 2190 iterations.

In addition to these criteria on the spatial variation of
magnetization, some geometrical criteria should also be met:
We impose that two adjacent boxes do not differ by more
than one level and try to minimize the area of interfaces
between boxes from different levels.

V. APPLICATIONS

A. Vortex in a thin square element

In this section the multiscale method is applied to the
study of a vortex in a thin square element. A multiscale simu-
lation is well adapted to such a system because the magne-
tization rotates rapidly near the center of the vortex, while
the rest of the system exhibits low variations of magnetiza-
tion. The use of the Heisenberg model near the center of the
vortex removes the singularity of the energy density ob-
served in micromagnetics.

To illustrate the need for an adaptive mesh refinement, we
start with the configuration shown in Fig. 10. A domain wall
is placed in the middle of the system, with a small misorien-
tation of the spins at the center compatible with the forma-
tion of a vortex. The final configuration after a minimization
of the energy is shown in Fig. 11. The exchange coupling
between first neighbors in a simple cubic lattice is J
=4 meV /�b

2. The atomic moments are m=4�b and the an-
isotropy is set to zero. These values are typical parameters
for magnetically soft materials, such as Permalloy Ni80Fe20.

The dimensions of the system are 140 nm�140 nm
�3.5 nm and the lattice parameter is a=0.35 nm, so the

total number of atoms accounted for is 1.6 million. With
such a number of atoms, a parallel implementation of the
atomistic code that also computes the dipolar field with the
FMM has been used to provide a reference calculation. A
comparison with a micromagnetic approach based on a uni-
form mesh of 65536 nodes has also been performed. In Fig.
12 we have plotted the out-of-plane component of the mag-
netization �along z� on a line crossing the center of the vor-
tex. It can be seen that the three approaches agree very well.

The good agreement with the micromagnetic approach is
ensured by using a mesh step of 1.1 nm�1.1 nm

FIG. 10. �Color online� Initial configuration to create a vortex:
The system contains two domains separated by an abrupt domain
wall; at the center of the system the spins are slightly tilted to be
compatible with the formation of a vortex �inset�.

FIG. 11. �Color online� Configuration of the vortex after an
energy minimization. The inset shows the magnetic structure near
the core of the vortex. Asymmetries in the mesh are due to the fact
that criteria to divide or gather boxes may not be met at the same
iteration in symmetric parts of the system, because of numerical
precision. Moreover these asymmetries may be persistent given the
different values considered for �d and �g that make the gathering of
boxes more difficult than their division.
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FIG. 12. �Color online� Component of the magnetization along z
on a line crossing the vortex core for the different approaches: fully
atomistic, micromagnetic, and multiscale.
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�0.9 nm, which is below the exchange length
A / �1 /2�0Ms

2�=5.8 nm. Decreasing the exchange coupling
J and thus the exchange stiffness constant A triggers a de-
crease in the exchange length, which can lead to significant
errors in the evaluation of the magnetization near the vortex
core in the micromagnetic approach. This is emphasized in
Figs. 13 and 14, where the same level for the fine mesh has
been kept while decreasing J. To accelerate the convergence,
the initial configuration consists of four closure domains
with the magnetization along x or y, with a sharp transition
between them. The number of variables is roughly constant
in the multiscale simulation and is around 20000. It remains
far below the number of variables needed for the micromag-
netic simulation on a uniform mesh, while keeping a good
precision on the result.

B. Microtwins and domain walls in FePt thin films

Our multiscale method is applied here to the study of the
interaction of domain walls with structural defects in thin
layers of FePt. It has been shown experimentally that in thin
films of L10 FePt deposited on a buffer layer of Pt, structural
defects called microtwins play a major role in the propaga-
tion behavior of domain walls.17 In such alloys exhibiting
very high magnetocrystalline anisotropy of the order of 1
meV per Fe atom, domain walls are strongly pinned to these
defects.2

The use of the multiscale approach is particularly interest-
ing here due to its ability to precisely describe the structural
defects at the atomic scale. Microtwins are formed by the
accumulation of stacking faults along the �111� planes, so the
core of these defects can be seen as a tilted L10 lattice. A
model proposed by Néel18 is used in both atomistic and mul-
tiscale methods to compute the anisotropy of the system.
This enables one to systematically take into account the con-
tribution of the local atomic configuration to the magnetic
anisotropy. Following ab initio calculations,19 a smaller ex-
change constant �J=0.15 meV /�b

2� is taken along the c axis
of the L10 material than along the a axis �J
=3.45 meV /�b

2�. The coupling is in all cases between near-
est neighbors. We assume that Pt atoms have no magnetic
moment and only contribute to the anisotropy of Fe atoms.
The moment of Fe atoms is 3.06�b. The micromagnetic
simulation of the system will not be envisaged here, because
it would require to deal with a nondiagonal exchange stiff-
ness tensor in the microtwin and related boundary conditions
between the microtwin and the rest of the system.

A configuration with the domain wall out of the microt-
win is shown in Fig. 15. The configuration with the pinned
domain wall can be seen in Fig. 16. The microtwin is always
described at the atomic scale. The system is periodic along
direction y and contains 40 Fe atomic planes along z.

Once the domain wall is pinned to the microtwin, the
depinning field depends on the direction of the field, as was
shown in Ref. 2. This is highlighted in Table I, where the
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FIG. 13. �Color online� Component of the magnetization along z
on a line crossing the vortex core for a multiscale simulation. Dif-
ferent values of exchange couplings J are envisaged �in meV /�b

2�.
Negative values of mz can be observed near the vortex core for J
=0.25 meV /�b

2 and they are ascribed to the dipolar field created by
the magnetization in the core �see Refs. 15 and 16�.
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FIG. 14. �Color online� Component of the magnetization along z
on a line crossing the vortex core for a micromagnetic simulation.
Different values of exchange couplings J are envisaged �in
meV /�b

2�. Note the poor precision on mz at the core of the vortex
when J is 0.25 meV /�b

2, compared to the multiscale simulation in
Fig. 13.

8 nm

FIG. 15. �Color online� Do-
main wall �on the left� out of the
microtwin �on the right�. The do-
main wall contains a Bloch core
with two Néel caps due to the di-
polar interaction. The microtwin
is 6 atomic planes wide and the
system contains 40 Fe atomic
planes along z.
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depinning field is given as a function of the width of the
microtwin. It can be seen that the multiscale method agrees
very well with the atomistic approach.

VI. CONCLUSION

We have presented a multiscale method for the simulation
of magnetic systems that seamlessly couples classical
Heisenberg model to micromagnetics. A multiresolution
adaptive finite difference mesh is used to compute the energy
and the local field. The hierarchical structure of the mesh
makes possible the evaluation of the dipolar term with an
order N fast summation scheme.

This method has been used to determine the magnetic
configuration of a thin square element where the initial state
consists of an abrupt domain wall in the middle of the sys-
tem. The resulting vortex is well described by the method
and compared to both fully atomistic and micromagnetic ap-
proaches. Another example of application is the interaction
between a domain wall and a microtwin in a thin layer of
FePt. The depinning fields are found in very good agreement
with fully atomistic computations.

Advantages in terms of number of variables and precision
are significant and make such a multiscale approach attrac-
tive for large magnetic systems where some specific regions
should be described at atomic scale, either because of steep
variations of magnetization or because of the presence of
structural defects.

APPENDIX A: ATOMISTIC AND MICROMAGNETIC
APPROACHES FOR EXCHANGE ENERGY

We derive here a general formula that gives the exchange
energy in the micromagnetic approach using the Heisenberg
model. A similar treatment has been applied for some com-
mon lattices in ferromagnets in Ref. 20.

Following Eq. �3�, the exchange energy density within the
Heisenberg model can be written as

eex = −
1

2Vc
�

s�Vc

�
t�V�s�

Jstmsmt�s · �t. �A1�

The micromagnetic approach states that there is a normal-
ized vector field ��r� defined in every part of the system. To
treat ferromagnets, locally collinear antiferromagnets or fer-
rimagnets, every atomistic variable �s must be equal or op-
posed to the value of this vector field at its position: ��rs�
=�s�s, with �s= �1. We note �st=�s�t, so that the energy
density due to the coupling between spins s and t reads

est
ex = −

1

2Vc
Jstmsmt�st��rs� · ��rt�

= −
1

2Vc
Jstmsmt�st�1 −

���rt� − ��rs��2

2
� . �A2�

To be consistent with the micromagnetic formulation of
exchange energy, the energy density must be zero if ��r� is
constant. Therefore we drop the constant term in the previous
equation. Using a first-order expansion of this field, we write
that

��rt� � ��rs� + �
p=1

3 �rst,p
��

�rp
�

r=rs

, �A3�

so that the exchange energy density is

est
ex =

1

4Vc
Jstmsmt�st �

p,q=1

3

rst,prst,q
��

�rp
·

��

�rq
. �A4�

The total energy density and the exchange stiffness tensor
are then given by Eqs. �4� and �5�.

TABLE I. Depinning fields on the left �bl� or on the right �br�
for a domain wall initially propagating from the left to the right, in
the atomistic and multiscale approaches. Uncertainty on the values
is 5 mT. The width of the microtwin w is in number of atomic
planes. The layer contains 40 Fe atomic planes.

Atomistic Multiscale

w
�at. planes�

bl

�T�
br

�T�
bl

�T�
br

�T�

3 −1.315 1.645 −1.315 1.645

6 −2.305 2.835 −2.305 2.835

9 −2.785 3.495 −2.795 3.505

12 −3.015 3.595 −3.025 3.615

8 nm

FIG. 16. �Color online� Do-
main wall pinned to the microt-
win. The microtwin is 6 atomic
planes wide and the system con-
tains 40 Fe atomic planes along z.
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APPENDIX B: MULTIPOLE EXPANSION
FOR A MACROSPIN

To evaluate the multipole expansion associated with a
macrospin, or to average the field on a box, it is necessary to
compute the following integral:

�
S

rlYl
−m��,��dS , �B1�

where the origin is at the center of the box and the integral is
evaluated over its surface. In the following we use the con-
vention of Ref. 14 for the spherical harmonics.

A simple approach to compute this integral consists of
rewriting solid harmonics rlYl

m�� ,��, which are homoge-
neous polynomials, under the form

rlYl
m��,�� = �

u=0

l

�
v=0

u

Cl,m
u,vxl−uyu−vzv. �B2�

Such a decomposition has been given by Caola �Ref. 21�.
We give here recurrence relations to determine the coeffi-
cients Cl,m

u,v. Starting with the expression

rlYl
l��,�� =

�2l�!�− 1�l

2ll!
�x + iy�l, �B3�

we use the following relation:

Yl+1
l ��,�� = 2l + 1 cos �Yl

l��,�� �B4�

and obtain

rl+1Yl+1
l ��,�� =

�2l + 1�!�− 1�l

2ll!
�x + iy�lz . �B5�

Other coefficients are determined using the following re-
currence relation:22

Bl+1
m Yl+1

m ��,�� − �2l + 1�Y1
0��,��Yl

m��,�� + Bl
mYl−1

m ��,�� = 0,

�B6�

with

Bl
m = �l + m��l − m� . �B7�

We obtain

rl+1Yl+1
m ��,�� =

2l + 1

Bl+1
m zrlYl

m��,�� −
Bl

m

Bl+1
m �x2 + y2

+ z2�rl−1Yl−1
m ��,�� , �B8�

so the relation between coefficients reads

Cl+1,m
u,v =

2l + 1

Bl+1
m Cl,m

u−1,v−1 −
Bl

m

Bl+1
m �Cl−1,m

u,v + Cl−1,m
u−2,v + Cl−1,m

u−2,v−2� .

�B9�
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