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Phase diagram, structure, and magnetic properties of the Ge-Mn system: A first-principles study
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We study the whole Ge-Mn phase diagram with density functional theory (DFT) methods. The 16 known phases
are described and trends are analyzed. The compounds are then simulated, allowing a complete evaluation of
this method in the projector augmented-wave approach within the collinear spin-polarized framework. Structural
parameters, as well as magnetic properties, are compared to experimental values. Stability issues are addressed
using a thermodynamic approach based on the grand potential, showing good agreement with experimental data.
The impact of semicore electrons and the exchange-correlation functional are also discussed. Finally, it is shown
that DFT methods are well suited to study this system, provided that the generalized gradient approximation
is used, as opposed to the local density approximation, and correlations between structural errors and Mn
concentration are taken into account. In addition, the precision achieved when compared to experiments is
40 meV/atom on energy, ±3% on the lattice parameter, and 0.2μB/Mn on magnetic moments. Magnetic orders
are mostly well reproduced.
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I. INTRODUCTION

Spintronics appeared from the start as a very promising
way to improve electronic devices. However, if significant
breakthroughs were made, its full potential is still to be
achieved. The bottleneck is the lack of suitable materials
allowing simultaneous control over electric and magnetic
properties. Encouraging experimental results reported by Park
et al.1 have drawn attention to the promising Ge-Mn system,
leading to a large variety of new experimental results.2–7 On the
other hand, density functional theory (DFT) calculations were
extensively used in theoretical works8–15 to support, explain,
and explore this complex system. Yet no complete study was
performed to assess the relevance of DFT calculations in this
case, and only limited comparisons have been proposed.10,11,13

Moreover, one of the key results of these methods, the total
energy, is at the same time the least efficiently used. This is
all the more puzzling because it is of particular importance in
this research where out of equilibrium techniques are widely
used to obtain new interesting metastable compounds. We
propose in this paper a general approach to evaluate the
prediction capabilities of a simulation method, as well as a
thermodynamic model to address the stability issues between
phases. The successful application of our approach to the
complex Ge-Mn system is an indication of its relevance for
other spintronic-relevant systems. The paper is organized as
follows: Methodological details are given first, then the known
phases are reported and described, and finally experimental and
numerical results are compared regarding structural, magnetic,
and stability properties.

II. METHODOLOGICAL DETAILS

A. Method generalities

We have used the projector augmented-wave (PAW)
approach as implemented in the ABINIT code,16,17 within
the generalized gradient approximation18 (GGA), for the
exchange-correlation energy in the collinear spin-polarized
DFT framework. Two sets of pseudopotentials were generated
both for Mn and Ge, using the ATOMPAW code.19 Without

semicore electrons, the first set includes only 4s and 4p
states as valence electrons for Ge and 4s and 3d states
for Mn, with augmentation radii of, respectively, 1.22 and
1.16 Å. Semicore electrons are added in the second set (3d
for Ge; 3s and 3p for Mn) with an augmentation radius
of 1.16 Å for both. Completeness of the basis set were
ensured for each pseudopotential. Local density approximation
(LDA) pseudopotentials were also generated with the same
parameters for comparison. The impact of semicore electrons
has been evaluated by comparing the results when either all
semicore electrons (for both Mn and Ge) or none are frozen.
We note that the computation time is almost ten times larger in
the second case as compared to the first one, mainly because
of three reasons: (i) A cutoff energy of 20 Ry is sufficient
without semicore electrons, while 35 Ry is required with them;
(ii) the higher number of electron bands; and (iii) the number
of iterations to achieve convergence is larger because of the
increase in degrees of freedom.

During the process of testing our pseudopotentials, and
comparing them to the literature, we have observed that both
Hartwigsen-Goedeker-Hutter (HGH)20 and HGH-Krack21

pseudopotentials of manganese with frozen semicore electrons
(Q7) are inappropriate with a wrong degeneracy of the empty
3d levels (see Fig. 1), but more importantly the cohesive energy
of the Mn γ phase is found to be negative (−1.23 eV/Mn, i.e.,
unstable), when it should be positive, as observed with all other
pseudopotentials [for instance, +4.67 eV/Mn for HGH with
unfrozen semicore electrons (Q15) in LDA, denoted as HGH
Q15 in Fig. 1].

B. Simulation parameters used for all Ge-Mn compounds

For the simulations of all the Ge-Mn compounds, we have
used k-point meshes that ensure an error on the total energy
lower than 0.1 meV/atom. Also, a Fermi-Dirac smearing with
a temperature of 300 K was applied to improve convergence.22

Internal coordinates as well as lattice parameters were relaxed
simultaneously until achieving convergence of better than
10−4 Hartree Bohr−1 on forces and 10−3 GPa on pressures.
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FIG. 1. (Color online) Energy levels of one Mn atom in vacuum,
depending on the pseudopotential (LDA). Filled and hollow symbols
correspond to filled and empty states, respectively. Triangles corre-
spond to the state with a principal quantum number n = 3, squares
to n = 4, and pentagons to n = 5. Results of HGH pseudopotentials
and our PAW pseudopotentials are detailed both with (Q15) and
without (Q7) semicore electrons taken in valence. Spin-up states
are in blue whereas spin-down states are in red. One can observe
that the HGH-Krack pseudopotential without semicore electrons
(HGH Q7) leads to excited 3d levels that do not have the correct
degeneracy.

Our tests show this corresponds to a precision of better than
0.1 meV/atom on energy and 0.01% on the lattice parameter.

Different magnetic orders were tested for each compound.23

For phases exhibiting noncollinear magnetism, different pro-
jections of magnetic moments were used as the starting point
for the calculations. In this case, the results presented here
correspond to the lowest-energy configuration.

III. THE KNOWN Ge-Mn COMPOUNDS

A. Different phases in different thermodynamic conditions

We have studied all the Ge-Mn phases present in the
(T,[Mn]) phase diagram of the GeMn binary alloy.24 This
diagram presents 12 defined compounds. Among them, six
are stable under the standard conditions of temperature and
pressure (STP): diamond Ge, Mn11Ge8 (θ ), Mn5Ge3 (η),
Mn5Ge2 (κ), Mn3Ge (ε1) and Mnα and six others appear at
high temperature: Mn2Ge (χ ), Mn5Ge2 (ζ ), Mn3Ge (ε), Mnβ ,
Mnγ , and Mnδ .

However, this phase diagram only reports the variations of
stoichiometry and temperature, whereas pressure is not taken
into account. Yet, for the past 20 years, high-pressure synthesis
of new compounds have been performed. Indeed, Takizawa
et al. have managed to stabilize four new phases using a liquid
melt of Ge and Mn at a pressure ∼4–6 GPa. These compounds
are MnGe4, Mn3Ge5, MnGe, and Mn3Ge.

The 16 compounds just mentioned are further detailed in
Table I, and shown in Fig. 2. We will now briefly described
all these compounds and their particularities, starting with
those stable in standard conditions, then high-temperature
compounds, and finally high-pressure compounds.

B. Phases description

1. Standard conditions for temperature and pressure (STP)

(a) Diamond Ge. The stable phase of germanium is the
diamond structure, which can be seen as the assembly of
two face-centered cubic sublattices. Its properties have been
thoroughly studied, experimentally as well as theoretically.
Thus we will not describe it further.

TABLE I. The different phases of the GeMn binary alloy, and their characteristics. Magnetic orders can be ferromagnetic (FM),
antiferromagnetic (AF), ferrimagnetic (FiM), noncollinear magnetic (NC), and nonmagnetic (NM). Most of the data are drawn from Refs. 25
and 26.

Pearson’s Space Struct. Magnetic Natom/

Compound [Mn] symbol group design. Prototype order unit cell

STP Diamond Ge 0% cF8 Fd3̄m A4 C(diam) NM 2
Mn11Ge8 (θ ) 57.9% oP76 Pnma Mn11Cr8 NC 76
Mn5Ge3 (η) 62.5% hP16 P 63/mcm D88 Mn5Si3 FM 16
Mn5Ge2 (κ) 71.4% oI28 Ibam Mn5Ge2 FiM 28
Mn3Ge (ε1) 75% tI8 I4/mmm D022 Al3Ti FiM 4
Mnα 100% cI58 I 4̄3m A12 αMn NC 58

HT Mn2Ge (χ ) 66.7% hP6 P 63/mmc D82 Ni2In FiM 6
Mn5Ge2 (ζ ) 71.4% hp128 P 3c1 AF 42
Mn3Ge (ε) 75% hP8 P 63/mmc D019 Ni3Sn NC 8
Mnβ 100% cP20 P 4132 A13 βMn NC 20
Mnγ 100% cF4 Fm3̄m A1 Cu – 1
Mnδ 100% cI2 Im3̄m A2 W – 2
Mnγ−δ

a 100% tI2 I4/mmm A6 In 2

HP MnGe4 18.0% cI10 I432 Hg4Ptb FM 39
Mn3Ge5 37.5% oPc D8

2d 32c

MnGe 50% cP8 P 213 B20 FeSi AF 8
Mn3Ge 75% cP4 Pm3̄m L12 Cu3Au FM 4

aMnγ−δ is the low-temperature form of both Mnγ and Mnδ phases (Ref. 27).
bThe MnGe4 compound is built from four faulted Hg4Pt unit cells.
cDeduced from our simulations, since atomic coordinates are not known experimentally.
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FIG. 2. (Color online) The known Ge-Mn compounds, ranging
from 0% Mn at the bottom to 100% Mn at the top. Crystal lattices
are shown, with, on the left-hand side, stable phases in the standard
conditions of temperature and pressure (STP), and on the right-hand
side, high-temperature (HT) compounds in orange and high-pressure
(HP) compounds in green.

(b) Mn11Ge8 (θ ). The Mn11Ge8 compound (sometimes
referred to as Mn3Ge2 for historical reasons) is the stable
GeMn alloy containing the fewest Mn atoms, although still
58%. Due to this feature, the compound segregates and forms
clusters when annealing GeMn diluted magnetic semiconduc-
tor (DMS), which have lower global concentrations.

It was identified in 1974 to be isostructural to Mn11Cr8.28

Its unit cell contains 76 atoms, and despite an apparent strong
complexity, it can be understood by comparing it to Mn5Ge3.
Indeed, both compounds are built from the same brick (brick
a on Fig. 3). The difference comes from the brick b (see
Fig. 3) which is made of six Mn atoms in Mn5Ge3, when there
are seven Mn atoms and two Ge atoms in Mn11Ge8. Thus, a

bricks are organized on an hexagonal lattice for the Mn5Ge3,
and as “beans” in Mn11Ge8 (see Fig. 3). In the same way that
Mn atoms are described in Mn5Ge3, MnI are at the center of a

bricks, and MnII form the b bricks.
The magnetism of this compound is also peculiar. It is

antiferromagnetic (AF) at low temperature, becomes ferro-
magnetic above 150 K, and then paramagnetic beyond 274 K.29

However, the atomic magnetic moments are only known to
be in the a–c plane in the collinear AF order, while the
ferromagnetic order appears with an atomic magnetic moment
of 0.05μB/Mn in the b direction.29 Yet, the paramagnetic
moment reaches 3.26μB/Mn. Thus it is believed that the

FIG. 3. (Color online) Comparison between Mn5Ge3 (η) and
Mn11Ge8 (θ ) structures, from the c axis. Shown in red are the unit
cells. The a brick is the same in the two compounds, whereas the b

bricks are different. The hexagonal and “bean-shaped” organization of
bricks a are also shown in Mn5Ge3 (η) and Mn11Ge8 (θ ) compounds,
respectively.

ferromagnetism is due to a small out-of-the-plane (a–c plane)
contribution of atomic moments, in a configuration close to
that of the AF order.29 However, no further information is
available.

(c) Mnd5Ge3 (η). The structure of this compound is identical
to that of Mn5Si3,30 yet it is ferromagnetic with a Curie
temperature (TC) of 300 K. It is of hexagonal symmetry, with
a local order very close to that of Mn11Ge8, with a slightly
higher Mn content. The unit cell is made of 16 atoms of
three types: MnI and MnII, which exhibit a magnetic moment
of 1.9μB and 3.3μB , respectively,31 and one type of Ge
atoms.

(d) Mn5Ge2 (κ). The exact atomic structure of this
compound has been determined in 1984,32 but it was still
referred to as Mn7Ge3 in 1990.26 It is described as an
arrangement of 4 × 2 × 2 body-centered cubic cells (bcc), in
which four atoms are removed (see Ref. 32). The unit cell
thus contains 28 atoms: three types of Mn and one of Ge. It
is ferrimagnetic with compensation temperatures of 395 and
710 K, respectively.33,34 Mn atoms hold local moments of
2.18μB , 2.02μB , and −2.96μB .33,34

(e) Mn3Ge (ε1). This phase is isostructural to Al3Ti,35 of
face-centered tetragonal (fct) type. Its stoichiometry is closer
to Mn3.25Ge,36 which is explained by the partial occupancy of
the 2a site (6% Mn and 94% Ge).33 It can also become Mn3.4Ge
depending on preparation conditions.26 In our calculations
however, we have used a 2a site occupancy of 100% Ge
(Mn3Ge) for obvious simplicity reasons. This compound is
ferrimagnetic,33 with a sublattice of Mn holding a local
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moment of 1.9μB and the other of −3μB , and a Curie
temperature that is higher than the melting one.

(f) Mn α. The stable phase of pure manganese is extremely
complex, as opposed to that of other transition metals that
are all compact (fcc, hcp, or bcc). Fifty-eight atoms, divided
into six sublattices, make the unit cell.37 This complexity
seems to have its origins in the competition between Hund’s
rule (that tends to maximize total spin moment) and orbital
hybridization, with on top of that an AF triangular frustration.11

2. High-temperature phases

There are three known Ge-Mn compounds and three
allotropic forms of Mn.

(a) Mn2Ge (χ ). This compound has no equivalent at low
temperature, and breaks down to Mn5Ge3 (η) and Mn5Ge2 (κ)
after annealing. The structure prototype is Ni2In.38 The cell
consists of six atoms with two types of Mn. To our knowledge,
local magnetic moments have not been measured yet.

(b) Mn5Ge2 (ζ ). This is the high-temperature continuity
of Mn5Ge2 (κ). It is in fact made of two phases: Mn5.11Ge2

ζ1 (Ref. 39) and Mn5Ge2 ζ2.40 Both can be seen as faulted
Mn2Ge (χ ),36,41 but their unit cells contain 130 and 40 atoms,
respectively. We have only simulated the smaller phase (ζ2).
Magnetism seems to be AF,36 with no further details.

(c) Mn3Ge (ε) This is the high-temperature phase of the
Mn3Ge (ε1) compound. It is also referred to as Mn3.4Ge,26

which means some of the Ge atom sites are partially occupied
by Mn, as for the ε1 phase. The unit cell is made of six
atoms. The magnetism is noncollinear, with an AF triangular
interaction.33 A weak ferromagnetism (TC = 365 K) is ob-
served along the easy magnetization axis out of the ab plane.33

(d) Mn β. The β phase of manganese (T > 720 ◦C) is
close to the α phase, yet more ordered: The unit cell contains
“only” 20 atoms of two sublattices.42 The magnetism is also
noncollinear AF.10

(e) Mn γ . The compact phase of manganese appears above
1100 ◦C.26 It is a face-centered cubic structure (fcc), with
one Mn atom per unit cell. It is paramagnetic at these high
temperatures, with a magnetic moment of 2.3μB/Mn.43,44

(f) Mn δ. Beyond 1140 ◦C (and under the melting point) is
the Mnδ phase, of body-centered cubic structure (bcc).26 Its
magnetism is unknown.

(g) Mn γ − δ. This particular phase which does not appear
on the phase diagram is the low-temperature form of γ and
Mn δ when quenched. This face-centered tetrahedron (fct)27

phase will be referred to as Mn γ − δ. Very little information
is available, and none regarding magnetism.

3. High-pressure phases

(a) MnGe4. This phase forms under pressure higher that
5.5 GPa and temperatures ∼600–700 ◦C. The unit cell reported
is made of four Hg4Pt unit cells45 with no further precision.
The stoichiometry is closer to Mn0.875Ge4, which corresponds
to one missing Mn in the 40-atom unit cell, as proposed in the
original experimental study, thus making it Mn7Ge32. Since all
Mn atoms are equivalent, we have, in our simulations, removed
one Mn in the 40-atom unit cell. This compound is also known
to be metastable in the STP conditions, and breaks down into

Mn5Ge3 and diamond Ge at 300 ◦C. It is ferromagnetic with a
TC of 340 K and a magnetic moment of 1.2μB/Mn.

(b) Mn3Ge5. This phase appears at 4 GPa and between 600
and 1000 ◦C. Its local structure is close to that of Mn4Si7 or
Mn11Si19, and more generally of the MGe2 compounds with
M = V, Cr, Mo, Ru, Rh.46 However, atomic coordinates are
not available, and we have been forced to guess them from
known MGe2 compounds. Fully relaxed results have proven
to be quite satisfactory (stoichiometry, lattice parameters, and
energy), as it will be shown later. The magnetic properties of
this compound have not been experimentally studied.

(c) MnGe. The stoichiometric MnGe phase forms in similar
conditions: 4–5.5 GPa, 600–1000 ◦C. It has the same B20
cubic unit cell47 as many other semiconductor-transition metal
alloys (FeGe, CrGe, and the prototype FeSi). Experimen-
tal measurements show an AF behavior, without further
details.

(d) Mn3Ge. This phase was identified in 2002.48 It is stable
under 6.2 GPa and 1000 ◦C. The type is fcc L12 (prototype
Cu3Au). Its local structure is close to that of Mn3Ge ε1.
It is ferromagnetic, the saturated magnetic moment reaches
0.87μB/Mn, and the Curie temperature is 400 K.

C. Evolution of the compacity of Ge-Mn phases

Let us first discuss some trends about all these compounds.
Germanium and manganese have very different features: The
first one is a semiconductor which binds covalently with
(optimally) four neighbors, whereas the second one is a metal
that maximizes its number of neighbors. In one case, the stable
structure is open (diamond Ge), while in the second case it is
compact [Mn α (Ref. 11)]. There is thus an impact on the
evolution of the atomic density of GeMn alloys versus the Mn
concentration. As plotted in Fig. 4, we can see that it almost
doubles from pure Ge to pure Mn, with a strong increase at
low Mn concentration. In addition, it must be noted that this
tendency is not due to the atomic radius of atoms, since Mn
atoms are bigger (1.4 Å) than Ge atoms (1.23 Å), but due to
the crystallographic ordering.

This density variation is significant information for the
research of new metastable compounds50 formed at the low-
temperature growth of Ge-Mn samples. This must also be taken

FIG. 4. (Color online) Evolution of the experimental compacity
(Ref. 49) of GeMn alloys as a function of Mn concentration. Results
are normalized to one for diamond Ge. Disks are STP phases, whereas
crosses are HT or HP phases, red and green, respectively. The line is
a guide for the eyes and emphasizes the strong correlation between
compacity and Mn concentration.
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into account when evaluating the Mn concentration of GeMn
clusters of unknown crystal structure.4–6

The two pure Mn phases with a compacity lower than
1.6 are Mn γ and δ. This difference with Mn α, β and
γ -δ comes from thermal expansion, since measurements
were performed at high temperature, respectively, 1100 and
1140 ◦C.

IV. Ab initio STUDY OF THE Ge-Mn COMPOUNDS

After a review of the known GexMn1−x alloys of the
(x,T ,P ) phase diagram, we will apply first-principles methods
(described in Sec. II) to compare experimental and numerical
results regarding structural, magnetic, and stability properties.
Moreover, the impact of the semicore electrons will be
evaluated.

A. Structure: Lattice parameters and internal relaxation

Simulated and experimental lattice parameters of all phases
are reported in Table II. Our results are consistent with the
published studies using the same approximations (DFT-GGA):
Differences are lower than 0.2% for diamond Ge,51 Mn5Ge3,52

and Mn α,11 and 0.6% for Mn β.10 Shown in Table II and
plotted in Fig. 5 versus the Mn concentration, the mean error
Errtot on the lattice parameters is computed from the unit-cell
volume V as follows:

Errtot =
(

Vcal

Vexp

) 1
3

− 1. (1)

FIG. 5. (Color online) Evolution of the error Errtot on the lattice
parameters calculated by the DFT method, vs Mn concentration, for
simulations without the semicore electrons. Disks are STP phases,
whereas crosses are HT or HP phases, red and green, respectively. A
straight line is drawn between diamond Ge and Mn α to emphasizes
the trend.

The first thing that can be noticed from Fig. 5 is the
strong correlation between the Mn concentration and the lattice
parameter error, which seems to be quasilinear for the STP
compounds. It is tempting to explain this phenomenon simply
by stating that the Ge atom size is overestimated by 2%, and
the Mn atom size underestimated by 3%. However, details of
both internal and cell relaxations prove otherwise, and point
toward a more complex phenomenon.

In the case of metastable compounds (HT and HP phases),
the linear correlation seems to apply to a lesser extent. This
can however be explained as follows: (i) Simulation does not
respect the precise stoichiometry of some compounds [e.g.,

TABLE II. Comparison of simulated and experimental lattice parameters of known Ge-Mn compounds. Simulation data were obtained in
the magnetic ground state.

Experimental lattice
parameter (Å) Simulation (this study) lattice parameter (Å)

Compound a b c Ref. a (err)a b (err)a c (err)a Errtot
a Errtot

b

STP Diamond Ge 5.66 53 5.77 (+1.9%) +1.9% +1.9%
Mn11Ge8 (θ ) 13.17 15.82 5.07 54 13.11(−0.5%) 15.61(−1.3%) 5.04(−0.5%) −0.8% −0.3%
Mn5Ge3 (η) 7.18 5.05 25 7.15(−0.5%) 4.99(−1.3%) −0.8% −0.3%
Mn5Ge2 (κ) 11.78 5.37 6.14 25 11.55(−2.0%) 5.30(−1.3%) 6.05(−1.5%) −1.6% −1.2%
Mn3Ge (ε1) 2.69 3.62 25 2.65(−1.4%) 3.57(−1.4%) −1.4% −1.1%
Mnα 8.88 37 8.66(−2.4%) −2.4%

HT Mn2Ge (χ ) 4.17 5.28 25 4.25(1.8%) 5.06(−4.1%) −0.2% 0.4%
Mn5Ge2 (ζ ) 7.20 13.08 55 7.08(−1.7%) 12.76(−2.4%) −1.9%
Mn3.4Ge (ε) 5.35 4.37 55 5.17(−3.2%) 4.25(−2.9%) −3.1% −3.0%
Mnβ 6.31 27 6.05(−4.2%) −4.2% −4.2%
Mnγ 3.86c 27 3.54(−8.4%) −8.4% −8.4%
Mnδ 3.08d 27 2.80(−9.3%) −9.3% −9.1%
Mnγ−δ 2.67 3.46 27 2.60(−2.8%) 3.48(+0.7%) −1.7% −1.7%

HP MnGe4 11.03 11.03 5.60 45 11.35(2.9%) 11.35(2.9%) 5.71(1.9%) 2.6% 2.9%e

Mn3Ge5 5.75 13.89 46 5.71(−0.7%) 13.82(−0.5%) −0.6%
MnGe B20 4.80 47 4.76(−0.7%) −0.7% −0.2%
Mn3Ge L12 3.80 48 3.75(−1.5%) 3.75(−1.5%) 3.65(−3.9%) −2.3% −1.9%

aWithout semicore electrons.
bWith semicore electrons.
cMeasured at 1100 ◦C.
dMeasured at 1140 ◦C.
eExtrapolated from the NiHg4 for the calculation with semicore electrons.
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Mn3.4Ge (ε), Mn5.11Ge2 (ζ ), . . .]; (ii) there are compounds not
fully characterized experimentally, from a magnetic or struc-
tural point of view (MnGe4, Mn3Ge5, Mn3Ge ε), leading to
possible errors in our simulations; (iii) noncollinear magnetism
is not well simulated; (iv) temperature effects are not included
in the calculations; and finally (v) experimental data are also
subject to errors, especially in nonstandard conditions.

Nevertheless, the MnGe4 compound is noticeably far of the
straight line underlying the tendency in Fig. 5. The error on
the lattice parameter is indeed of 2.6% (2.9% with semicore
electrons). We think it can only be attributed to the atomic
structure, which must be erroneous. However, the hypothesis
we have done on the structure (removal of one Mn interstitial
atom) is the only one possible, and is in full agreement with
the experimental description of Ref. 45.

It is also worth noticing that the high-pressure Mn3Ge L12

cubic symmetry is broken in the calculated structure. This is
due to the fact that we could not reproduce the noncollinearity
of the experimental magnetic order. Instead, a simple AF order
corresponds to the lowest energy, but breaks the symmetry.

With the tendency shown in Fig. 5, it seems possible to
estimate the error Errtot coming from the method for other
concentrations than those already simulated. In the range
30%– 50%, for example, the error seems minimal because
of the compensating errors of Mn and Ge. Thus in this range
one would have to compare the simulated lattice parameters
directly with the experimental values, instead of applying a
correction deduced from a simulation of Ge diamond.

The origin of this surprising behavior of Mn in GGA (that
usually overestimates lattice parameters) can be attributed to
the exchange and correlation mechanisms. Indeed, they are of
particular importance for Mn where the d shell is half filled,

i.e., the worst case for local or quasilocal approximations.
We also think that GGA must therefore be preferred to LDA
when it comes to simulating these compounds, especially when
magnetic properties are involved, since magnetism is known
to be strongly dependent on interatomic distances.

B. Magnetism

The next discussion is about magnetic properties, and
especially magnetic order and local moments. Experimental
and numerical values are reported in Table III. Theoretical
values are calculated as the difference between up and down
electron density inside spheres centered on nuclei, and of
radius 1.17 Å (PAW spheres). As mentioned before, these data
are obtained for simulations where both internal coordinates
and cell parameters are fully relaxed. Again, these values
are consistent with those already published,10,11,52 with an
agreement of better than 0.2μB/Mn.

First, the magnetic configurations with the lowest energies
are indeed those measured experimentally, except for two high-
pressure configurations and of course for the four noncollinear
configurations since they could not be considered here. These
six latter configurations, as well as the experimentally un-
known configurations, will be discussed afterward. The second
agreement concerns the amplitude of the magnetic moments,
which are relatively well reproduced: The mean error is lower
than 0.3μB/Mn for STP phases. Regarding HT and HP phases,
it appears that the larger errors are due to the strong impact of
the lattice parameter errors on the magnetic properties. Indeed,
calculations done by imposing the experimental values for
the lattice parameters lead to much better agreements.10 For
Mnγ and Mnδ , the experimental magnetic moment values were

TABLE III. Comparison between experimental and simulated values of local magnetic orders and local magnetic moments, in Bohr
magneton (μB ). Magnetic orders can be ferromagnetic (FM), antiferromagnetic (AF), ferrimagnetic (FiM), and noncollinear magnetic (NC).

Experiment Simulation (this study) Mean

Compounds Magn. order Mn1 Mn2 Mn3 Ge/Mn4 Ref. Magn. order Mn1 Mn2 Mn3 Ge/Mn4 errora

STP Mn11Ge8 (θ ) NC 29 AF or FMb 2.3 2.7 −0.14
Mn5Ge3 (η) FM 1.9 3.3 31 FM 2.2 3.1 −0.15 0.27
Mn5Ge2 (κ) FiM 2.0 2.2 −3.0 34 FiM 1.7 2.0 −3.1 −0.02 0.19
Mn3Ge (ε1) FiM 3.0 −1.9 33 FiM 2.9 −2.0 0.05 0.09
Mnα NC 2.8 −1.8 0.5 0.48 37 FiM 3.0 −2.3 0.5 −0.15 0.24

HT Mn2Ge (χ ) FiM 2.9 −2.0 0.01
Mn5Ge2 (ζ ) AF 36 AF-FiMc ∼2.5
Mn3.4Ge (ε) NC 2.4 33 FiM 2.0 0.42
Mnβ NC −0.2 1.0 61 FiM −0.2 0.5 0.29
Mnγ 2.3d 43 AF 0.9 1.4
Mnδ ∼1d 43 NM 0 1
Mnγ−δ AF 1.9

HP MnGe4 FM 1.2 45 FM 2.5 1.33
Mn3Ge5 AF ∼1.1
MnGe B20 AF 3.0 47 FM 2.2 0.8
Mn3Ge L12 FM 0.9 48 FiM 2.9 −2.2 −2.2 0.34

aErrmoy = 〈||μsimu
i | − |μexpe

i ||〉.
bAF or FM: The ferromagnetic and several antiferromagnetic orders are close by less than 10 meV/atom.
cAF-FiM: Local order is ferrimagneticlike Mn2Ge (χ ), but different variants lead to a total moment close to 0.
dμC : Magnetic moment in the paramagnetic regime, measured for the high-temperature lattice parameter.
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obtained in the paramagnetic regime,56,57 i.e., with a much
higher lattice parameter due to thermal expansion. The case of
MnGe4 is finally again problematic since the error on magnetic
moment reaches 1.3μB/Mn. We will now discuss each of the
nine phases whose magnetic order is either noncollinear or
unknown, as well as the two configurations for which the
simulation does not reproduce the experimental results.

(a) Mn11Ge8 (θ ). Its magnetic order being noncollinear,29

we have tested four different configurations: (i) ferromagnetic;
(ii) ferrimagnetic, with MnI up and MnII down; and (iii) two
AF configurations, in which parallel alignment is preserved
inside b bricks,58,59 and these bricks are antiferromagnetically
coupled to each other. As a result, ferromagnetic atoms
are gathered in slices, as suggested experimentally.60 The
least stable configuration is the ferrimagnetic one, almost
20 meV/atom higher than the three others, which are degener-
ated within a few meV. The lowest energy corresponds to one
of the AF configurations, which as been reported in Table III.
Lattice parameters can change by almost 1% depending on the
magnetic order.

(b) Mnα and Mnβ . They display experimentally a frustrated
AF behavior. We have used the collinear configurations
proposed in Refs. 10 and 11, which correspond as closely
as possible to their magnetic order.

(c) Mn2Ge (χ ). Its magnetic order is unknown experimen-
tally. The lowest energy found corresponds to a ferrimagnetic
order with a ferromagnetic alignment inside each sublattice.

(d) Mn5Ge2 (ζ ). Its magnetic order is also unknown exper-
imentally. It was simulated in a ferrimagnetic configuration
close to that of Mn2Ge (χ ), since the two structures have a
similar local order.41 However, due to the different variants
present in the ζ phase, the total magnetic moment is close to
zero.

(e) Mn3.4Ge (ε). It has been reported as a noncollinear
antiferromagnetic, with triangular spin arrangements. The
lowest energy found corresponds to an AF order that preserves
the cell symmetry: One Mn triangle is up whereas the other
one is down.

(f) Mnγ . The magnetic order of this high-temperature
compound has not been unraveled experimentally, probably
because of its instability at low temperature.27 We find it to be
antiferromagnetic of AuCu type, as reported by Hobbs et al.10

Both ferromagnetic and [111]-oriented antiferromagnetic have
higher energies.

(g) Mnδ . For the same reason as Mnγ , experimental data
are not available. Mnδ seems however to be ferromagnetic
in simulation, with an extremely low magnetic moment, thus
making it almost nonmagnetic.

(h) Mn3Ge5. Our calculations show that a ferrimagnetic
configuration is the most stable one, as compared to ferro-
magnetic order, as well as antiferromagnetic by plane and by
columns.

(i) Mn3Ge L12. This compound is ferrimagnetic in simula-
tion, whereas it is described as ferromagnetic experimentally.48

However, experimental results mention a strong difference
between the saturation magnetic moment μS (0.9μB) and
the paramagnetic moment μC (1.7μB ). Authors ascribe this
difference to the itinerant ferromagnetism of the compound.
Thus, either simulation fails to reproduce the correct magnetic

order, or the experimental results are the consequence of a
noncollinear magnetism, with an out-of-plane contribution as
is the case for Mn11Ge8 or Mn3Ge (ε).

(j) MnGe B20. The stoichiometric compound has the
lowest energy in the ferromagnetic state, whereas experiment
reveal an AF behavior. Yet, we have tested all possible
magnetic configuration within the eight-atom unit cell, as
well as for a supercell double the size. We see three possible
explanations: (i) The magnetic configuration is more complex
than we can handle, namely, it involves noncollinearity and/or
periodicity bigger than two times the unit cell (e.g., spin
spiral); (ii) method-induced relaxations change the sign of
the interactions; and (iii) the exchange-correlation functional
is particularly not adapted to this particular case.

(k) MnGe4. The high-pressure Ge-rich compound again
shows a large error in magnetic moments, which cannot solely
be attributed to the error on the lattice parameter.

Lastly, the impact of semicore electrons on magnetism is
minimal, since we find a mean difference between the two
methods of lower than 0.1μB/Mn for all compounds.

C. Energy and stability

Energy is a key output of first-principles calculations, and
a comparison of energies is used to assess the stability of a
wide variety of chemical and structural configurations. Here,
we want to compare the energies of the different GecMn1−c

compounds, where c can vary from 0 to 1. The goal is to be
able to predict which phases are stable, which are not, and
most importantly, by what amount.

(a) Theoretical basis. A mere comparison of the total
energy per atom is, however, impossible since two different
species with different concentrations are involved in the
compounds. We will use a semigrand canonical potential,
similar to the one in Ref. 62, particularly convenient to study
the equilibrium of systems that can exchange particles and
thus the respective stability of each compound. Because our
first-principles calculations have been done at T = 0 and with
a crystal cell optimization that allows us to get energy at zero
stress tensor τ (in particular, at pressure p = 0), we will omit
the temperature-entropy term T S and the V τη term in the
internal energy U ,

U ({Ni}) =
∑

i

μiNi, (2)

where Ni is the number of atoms of type i and μi is their
chemical potential. In our case, the sum is performed on the
two different species of the system (i ∈ {Ge,Mn}) and U is
determined by the DFT calculations, U = Nε, where ε is
the computed energy per atom. To focus on the compound
composition, it is convenient to make a simple change of
variables and express the energy versus the total number
of atoms N = NGe + NMn and the difference X = (NGe −
NMn)/2:

U ({Ni}) = E(X,N ) = −�μX + μN, (3)

where �μ = μMn − μGe is the chemical potential difference
between Ge and Mn atoms, and μ is the mean value (μGe +
μMn)/2. We now define the semigrand canonical potential
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(�μ,N ) using a Legendre transform63,64 of E to get the
intensive variable �μ as state variable rather than X:


(�μ,N ) = E + �μX. (4)

Although omitted in our notation, the transformation is also
done for the conjugate variables (T ,S) and (τ ,V η) in order
to be able to impose the T = 0 and τ = 0 conditions. The
only extensive state variable is now N and we can introduce
some atomic quantities: the reduced semigrand canonical
potential,

φ(�μ) = 
(�μ,N )/N = ε + �μx, (5)

the ab initio energy per atom ε, and the deviation x = X/N (=
cGe − 1

2 = 1
2 − cMn), where cGe and cMn are the concentration

of each specie (they abide by the relation cGe + cMn = 1). For
a given value of the state variable �μ, we want to determine
which alloy has the lower potential φ(�μ). From Eq. (5),
we see that each compound γ defines a straight line εγ +
�μ xγ in the (φ, �μ) plane, where the energy εγ and the
concentration deviation xγ are characteristics of γ (see, for
instance, Fig. 6). Therefore, in the graph φ vs �μ, a stable
alloy corresponds to its straight-line segment that is below
all the other straight lines of the other compounds. Such a line
segment represents a domain [�min

μ ,�max
μ ] in which the phase is

stable.
Because the Gibbs phase rule limits the number of inde-

pendent intensive variables, μ depends on �μ, T , and τ . The
last two intensive variables being set to zero in our case, the
relation between μ and �μ can be found from the partial
derivative equality65

∂E

∂N

∣∣∣∣
X

= ∂


∂N

∣∣∣∣
�μ

, (6)

and from Eqs. (3) and (5),

μ = φ. (7)

Thus μ is equal to ε + �μx. The individual chemical potentials
of any stable phase γ can be easily deduced:

μGe = εγ − c
γ

Mn�μ, (8)

μMn = εγ + c
γ

Ge�μ. (9)

For the pure Ge phase, μGe = εγ as expected and μMn =
(εγ + �μ) ∈] − ∞,�max

μ [ , i.e., Mn atoms have a lower energy
in the atom reservoir associated to the semigrand canonical
potential than they would have by creating a new phase in
the system. The value �max

μ corresponds to the first stable
compound containing Mn atoms. An equivalent remark can be
done for the pure Mn phase.

When two phases γ and δ, with different compositions,
are coexisting, the phase rule implies that �μ is no longer
independent. This correspond to the line segment extremities
in the graph φ vs �μ and

μGe = (
cδ

Mnεγ − c
γ

Mnεδ

)/(
cδ

Mn − c
γ

Mn

)
, (10)

μMn = (
cδ

Geεγ − c
γ

Geεδ

)/(
cδ

Ge − c
γ

Ge

)
. (11)

(b) Application to the Ge-Mn phase diagram. This com-
parison methodology was already used in a previous work to
predict the metastability of a new Ge-Mn phase50 in the Ge-rich
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FIG. 6. (Color online) Evolution of the reduced semigrand
canonical potential φ as a function of the difference of chemical
potential �μ [see Eq. (12)]. Simulations were performed without the
semicore electrons. There is one straight line per Ge-Mn phase. The
stable compound for each �μ is the one with the lowest free energy.
(a) STP phases; (b) HT phases (STP phases in light blue), and (c) HP
phases (STP phases in light blue).

part of the equilibrium phase diagram. In the present work we
extend our analysis to the entire phase diagram, including also
HT and HP phases. We also investigate the sensitivity to the
freezing (Fig. 6) or not (Fig. 7) of semicore electrons. The
reduced semigrand canonical potential φ is reported on each
figure for STP, HT, and HP phases [panels (a), (b), and (c),
respectively). For readability reasons, and since we only want
to address relative stability issues, we have applied a shift to
both the x and y axes of the diagrams, so that the origin of the
(φ,�μ) plan is at the intersection of the lines for diamond Ge
and Mnα .66 Such a simple shift can be achieved by rewriting
Eq. (5) as

φ(�μ) = ε −
(

εGe + εMn

2

)
+ (

�μ − εGe + εMn
)
x, (12)
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FIG. 7. (Color online) Evolution of the reduced semigrand
canonical potential φ as a function of the difference of chemical
potential �μ [see Eq. (12)]. Simulations were performed with the
semicore electrons as valence electrons. There is one straight line per
Ge-Mn phase. The stable compound for each �μ is the one with the
lowest free energy. (a) STP phases; (b) HT phases (STP phases in
light blue), and (c) HP phases (STP phases in light blue).

where φ and �μ are now the shifted quantities, and where εGe

and εMn are the ab initio energy per atom in the diamond Ge
and Mnα phases, respectively.

In order to reproduce the experimental phase diagram, there
should be a stability domain for all of the six known phases
stable in the STP conditions. A stability domain of a phase is
simply a range in �μ where the phase’s line is the one with
the lowest energy. If we look at Fig. 6(a), it would be the
case only if the Mn3Ge ε1 compound had an energy ∼40 meV
higher. Indeed, its low calculated energy prevents three phases
[Mn11Ge8 θ , Mn5Ge3 (η), and Mn5Ge2 (κ)] from appearing
stable in this diagram.

If we now look at the HT phases in Fig. 6(b), results
are this time in perfect agreement with experiments since no
metastable compound has a stability domain, even if Mn3Ge

FIG. 8. (Color online) Error on energy induced by the freezing
of semicore electrons, as a function of Mn concentration. Disks are
STP phases, whereas crosses are HT or HP phases, red and green,
respectively.

ε1 were “corrected” by adding 40 meV. Concerning the HP
phases in Fig. 6(c), the compounds MnGe B20 and Mn3Ge5

seem too low in energy by 30 and 20 meV/atom, respectively.
Finally, we would like to focus on the MnGe4 compound,

which has a noticeably higher energy than the other com-
pounds: 180 meV/atom in the decomposition into Mn11Ge8

and diamond Ge (210 meV/atom for the unfaulted MnGe4).
In line with our previous remarks, we think this underlines a
possible bad atomic structure description.

Among the 16 known Ge-Mn compounds that we have
computed, three seem to be more difficult to simulate. If we
now look at the Fig. 7, we can see that the relaxation of
semicore electrons does not solve the problem, yet slightly
diminishes its amplitude. Indeed, the three problematic com-
pounds Mn3Ge ε1, MnGe B20, and Mn3Ge5 remain too low
in energy, but this time by 40, 25, and 15 meV, respectively,
while it was 40, 30, and 20 meV previously. We see three
reasons that might explain the underestimation in energy:
(i) the collinear approximation of magnetism and the lack
of spin-orbit coupling; (ii) the approximation on exchange-
correlation energy; and (iii) the fact that entropy is not taken
into account [T = 0 in Eq. (5)].

The approximation on magnetism cannot account for the
results since it can only lower the total energy of compounds
such as MnGe B20 (noncollinear antiferromagnetic) as op-
posed to Mn3Ge5 (collinear ferromagnetic). That could only
further worsen the results.

FIG. 9. (Color online) Error on the lattice parameter induced by
the freezing of semicore electrons, as a function of Mn concentration.
Disks are STP phases, whereas crosses are HT or HP phases, red and
green, respectively.
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TABLE IV. Error on the lattice parameter induced by the freezing
of semicore electrons for the Mn5Ge3 compound. s-c means that
semicore electrons are not frozen, but explicitly taken into account in
the calculation, in addition to the valence electrons.

Ge Mn a c Erra Errc

7.148 4.985 −0.5% −1.3%
s-c 7.163 4.987 −0.3% −1.3%

s-c 7.155 4.989 −0.4% −1.3%
s-c s-c 7.186 5.009 0.0% −0.9%
Exp 7.184 5.053

On the other hand, the exchange-correlation functional can
be the cause of this stability permutation. One would have to
test other functionals to check the validity of this hypothesis,
for example, hybrid functionals or the +U formalism.67 The
first solution has been applied to the study of the Mn dimer,68

and it seems that the addition of a Hartree-Fock part in the
exchange term improves the results. However, correlations are
known to be weaker in small molecules than in condensed
matter. Thus, what works for the Mn dimer may fail for our
compounds. Concerning the +U formalism, it has a major
drawback of being strongly dependent on the value of U which,
being different for each phase, prevents any energy comparison
between phases.

The third possible explanation is the effect of entropy.
It was indeed shown for the Al2Cu compound that entropy
reverses the stability between C1 and C16 allotropic forms,
compensating 15 meV/atom at temperatures higher than
200 ◦C.69 In our case, GeMn alloys form at even higher
temperatures, ∼700 ◦C. Thus, an inversion in stability of
40 meV/atom seems possible. Unfortunately, the evaluation
of the vibrational and configurational terms of entropy are
both close to impossible in this system. The first term would
require the phonon density of state of all alloys, beyond reach
of computation for cells as big as 76 atoms. The second term
would require the calculation of the energy of the different
defects for each alloy.

D. Impact of semicore electrons

In order to assess more precisely the effect of freezing
the semicore electrons in the calculations, the induced errors
on energy and lattice parameter are plotted in Figs. 8 and 9,
respectively.

The error on energy resulting from the freezing of semicore
electrons is lower than 20 meV/atom, except for Mn5Ge3, for
which it reaches 26 meV/atom (see Fig. 8). We can notice
that the error is bigger in compounds whose Mn concentration
is ∼60%. This tendency is the same regarding the error on
lattice parameter (see Fig. 9), with a maximal difference of
−0.5%. This difference in behavior can be attributed to the
polarizability of semicore electrons, which reacts differently
for compounds such as Mn5Ge3 and Mn11Ge8, whose mean
moments are higher than 2.5μB .

The error caused by freezing the semicore electrons
(20 meV/atom, <0.5%) is smaller than the error due to
exchange-correlation energy and entropy (40 meV/atom,
2.5%). Yet it is not negligible, and calculations requiring

precision should be performed with the inclusion of semicore
electrons. We have also tested an intermediate solution on the
Mn5Ge3 compound, in which semicore electrons are taken into
account only for one of the two species (Mn or Ge). It appears
that the results are only half improved, as shown on Table IV,
and that semicore electrons of both Mn and Ge are needed,
none playing a clearly dominant role.

V. CONCLUSION

A review of the known compounds of the Ge-Mn phase
diagram was presented, based on an extensive study of these 16
compounds. First, we discussed the almost linear relationship
between alloy compacity and Mn concentration. Due to the
different chemical behaviors of Mn and Ge atoms, the atomic
density increases strongly with Mn concentration, pure Mn
being almost twice as compact as diamond Ge. We have
then tested the DFT calculations on this system, and we can
draw the following conclusions: (i) The error on the lattice
parameter caused by the DFT-GGA approximation is almost
linearly correlated to the Mn concentration, ranging from
+2% in pure Ge to −2.4% in pure Mn. Using the LDA
approximation causes much larger errors (for instance ,−5.1%
as compared to −2.4% for Mn α lattice parameter), especially
in the presence of Mn. (ii) Here magnetism is well reproduced,
even when the calculated lattice parameters are used instead
of the experimental values. (iii) A simple thermodynamical
approach has been presented and allows a comparison between
our DFT calculations and the experimental phase diagram.
Good agreement has been obtained for all compounds except
for three alloys. In these latter cases, the error reaches only
40 meV/atom. This error results from both the approximations
made on exchange-correlation energy, and on a missing
entropy term that was not taken into account in this study.
(iv) The freezing of semicore electrons in the pseudopotential
causes an error of lower than 0.5% on the lattice parameter,
0.1μB/Mn on the magnetic moments, and up to 26 meV/atom
on the energy. Obtaining a significant increase in precision
requires that one takes into account all semicore electrons
(both for Mn and Ge), thus leading to a computation time that
is almost ten times larger.

We can conclude that the DFT method is suitable to study
the Ge-Mn systems, provided that resulting computational
errors are taken into account. Calculations with frozen semi-
core electrons are computationally faster and yield physically
acceptable results, yet require efficient pseudopotentials. In
addition, PAW formalism is recommended, whereas the
HGH pseudopotential for Mn without a semicore electron is
physically inappropriate.

Lastly, our calculations show that MnGe4 compound
as described in Ref. 45 has a behavior inconsistent with
experimental results, pointing toward a possible error in the
description of its atomic structure.
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ARRAS, CALISTE, DEUTSCH, LANÇON, AND POCHET PHYSICAL REVIEW B 83, 174103 (2011)

54T. Ohba, N. Watanabe, and Y. Komura, Acta Crystallogr. Sect. B
40, 351 (1984).

55P. Eckerlin and H. Kandler, in Structure Data of Elements and
Intermetallic Phases, edited by K. H. Hellwege and Landolt
Börnstein, New Series, Group III, Vol. 6 (Springer, Berlin, 1971),
pp. 626–627.

56μC/μS is known to be larger than 1 for itinerant magnetism.
57P. Rhodes and E. Wohlfarth, Proc. R. Soc. London A 273, 247

(1963).
58I. Slipukhina, E. Arras, P. Mavropoulos, and P. Pochet, Appl. Phys.

Lett. 94, 192505 (2009).
59It has been shown for Mn5Ge3C (see Ref. 60) that exchange

interactions within MnII are ferromagnetic, with or without the
presence of an interstitial.

60A. Burkhanov, V. Novogrudskiy, and I. Fakidov, Fiz. Met.
Metalloved. 42, 889 (1976).

61H. Nakamura, K. Yoshimoto, M. Shiga, M. Nishi, and K. Kakurai,
J. Phys. Condens. Matter 9, 4701 (1997).

62M. Laradji, D. P. Landau, and B. Dünweg, Phys. Rev. B 51, 4894
(1995).

63R. A. Alberty, Pure Appl. Chem. 73, 1349 (2001).
64H. B. Callen, Thermodynamics and an Introduction to Thermo-

statistics (Wiley, New York, 1985).
65R. Balian, From Microphysics to Macrophysics (Springer, Berlin,

1991), Vol. 1, Chap. 6.3.
66To facilitate comparison between the φ(�μ) graphs, the origin has

been first set for the calculation that includes the semicore electrons.
The origin for the calculation with frozen semicore electrons
was then chosen to minimize the overall differences between the
boundaries of the phase transitions.

67A. Stroppa, G. Kresse, and A. Continenza, Phys. Rev. B 83, 085201
(2011).

68S. Yamanaka, T. Ukai, K. Nakata, R. Takeda, M. Shoji,
T. Kawakami, T. Takada, and K. Yamaguchi, Int. J. Quantum Chem.
107, 3178 (2007).
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